[1] Hinze, J.O. (1975) Turbulence. McGraw-Hill Publishing Co., New York.
[2] Eggels, J.G., Unger, F., Weiss, M.H., Westerweel, J., Adrian, R.J., Friedrich, R. and Nieuwstadt, F.T.M. (1993) Fully-Developed Turbulent Pipe Flow: A Comparison between Direct Numerical Simulation and Experiment. Journal of Fluid Mechanics, 268, 175-209. http://dx.doi.org/10.1017/S002211209400131X
[3] Loulou, P., Moser, R., Mansour, N. and Cantwell, B. (1997) Direct Simulation of Incompressible Pipe Flow Using a b-Spline Spectral Method. Technical Report TM 110436, NASA-Ames Research Center, Mountain View.
[4] Wu, X. and Moin, P. (2008) A Direct Numerical Simulation Study on the Mean Velocity Characteristics in Pipe Flow. Journal of Fluid Mechanics, 608, 81-112. http://dx.doi.org/10.1017/S0022112008002085
[5] Lawn, C.J. (1971) The Determination of the Rate of Dissipation in Turbulent Pipe Flow. Journal of Fluid Mechanics, 48, 477-505. http://dx.doi.org/10.1017/S002211207100171X
[6] Rudman, M. and Blackburn, H. (1999) Large Eddy Simulation of Turbulent Pipe Flow. 2nd International Conference on CFD in the Minerals and Process Industry, CSIRO, Melbourne, 6-8 December 1999, 503-508.
[7] Yamamoto, Y., Kunugi, T., Satake, S. and Smolentsev, S. (2008) DNS and k-ε Model Simulation of MHD Turbulent Channel Flows with Heat Transfer. Fusion Engineering and Design, 83, 1309-1312. http://dx.doi.org/10.1016/j.fusengdes.2008.10.001
[8] Launder, B. and Spalding, D. (1972) Mathematical Models of Turbulence. Academic Press, Waltham.
[9] Alammar, K. (2008) Turbulence: A New Zero-Equation Model. 7th International Conference on Advancements in Fluid Mechanics, Wessex Institute of Technology, New Forest, 21-23 May 2008, 365-368.