OJGen  Vol.4 No.1 , March 2014
Predictive Analysis of Microarray Data

Microarray gene expression data are analyzed by means of a Bayesian nonparametric model, with emphasis on prediction of future observables, yielding a method for selection of differentially expressed genes and the corresponding classifier.

Cite this paper
Marques F., P. and B. Pereira, C. (2014) Predictive Analysis of Microarray Data. Open Journal of Genetics, 4, 63-68. doi: 10.4236/ojgen.2014.41009.

[1]   Friend, S.H. and Stoughton, R.B. (2002) The Magic of Microarrays. Scientific American, 286, 34-41.

[2]   De Finetti, B. (1974) Theory of Probability (Two Volumes). John Wiley & Sons, Hoboken.

[3]   GEO Dataset GDS3713. http://www.ncbi.nlm.nih.gov/geo

[4]   Pan, F., Yang, T.L., Chen, X.D., Chen, Y., Gao, G., Liu, Y.Z., Pei, Y.F., Sha, B.Y., Jiang, Y., Xu, C., Recker, R.R. and Deng, H.W. (2010) Impact of Female Cigarette Smoking on Circulating B Cells in Vivo: The Suppressed ICOSLG, TCF3, and VCAM1 Gene Functional Network May Inhibit Normal Cell Function. Immunogenetics, 62, 237-251.

[5]   Wall, L., Christiansen, T. and Orwant, J. (2000) Programming Perl. 3rd Edition, O’Reilly Media, Sebastopol.

[6]   Ferguson, T. (1972) A Bayesian Analysis of Some Nonparametric Problems. The Annals of Statistics, 1, 209-230.

[7]   Schervish, M.J. (1997) Theory of Statistics. Springer-Verlag, Berlin.