AJAC  Vol.5 No.4 , March 2014
Electronic Tongue and Neural Networks, Biologically Inspired Systems Applied to Classifying Coffee Samples
Abstract: In this paper, the possibility to use an electronic tongue based on a polypyrrole sensor array in classifying coffee samples has been studied. Each sensor shows a distinguished electrochemical response when exposed to the studied solutions, providing signals with a high degree of cross-selectivity. The sensor array electrochemical response is related to the interaction of the ionic and non-ionic solution compounds and to the surface of the sensors polymeric matrix. Furthermore, the electronic tongue was used to perform an analysis on coffee samples. In this case, each sensor showed a particular response to each coffee sample. Data obtained from the registered signals were used to perform a discrimination of the samples. The analysis with neural networks of the principal components (NNPC) done on the electronic tongue response to five types of commercial coffee, allows to achieve a clear differentiation of samples.
Cite this paper: Almario, Á. and Cáceres, R. (2014) Electronic Tongue and Neural Networks, Biologically Inspired Systems Applied to Classifying Coffee Samples. American Journal of Analytical Chemistry, 5, 266-274. doi: 10.4236/ajac.2014.54033.

[1]   Flament, I. (2002) Coffee Flavor Chemistry. John Wiley & Sons Ltd, Chichester.

[2]   Smith, D.V. and Margolskee, R.F. (2001) Making Sense of Taste. Scientific American, 284, 32-39.

[3]   Norgren, R. (1990) The Gustatory System, The Human Nervous System. George Paxinos, Academic Press.

[4]   Arrieta, A.A., Rodríguez Méndez, M.L., De Saja, J.A. and Blanco, C.A. (2010) Prediction of Bitterness and Alcoholic Strength in Beer Using an Electronic Tongue. Food Chemistry, 123, 642-646.

[5]   Arrieta, A.A., Rodríguez Méndez, M.L. and De Saja, J.A. (2010) Aplicación de una Lengua Electrónica Voltamétrica para la Clasificación de vinos y Estudio de Correlación con la Caracterización Química y Sensorial. Quimica Nova, 33, 787.

[6]   Mimendia, A., Legin, A., Merkoçi, A. and Del Valle, M. (2010) Use of Sequential Injection Analysis to Construct a Potentiometric Electronictongue: Application to the Multidetermination of Heavy Metals. Sensors and Actuators B: Chemical, 146, 420-426.

[7]   Toko, K., Hayashi, K., Yamanaka, M. and Yamafuji, K. (1990) Technical Digest of 9th Sensor Symposium. 193.

[8]   Parra, V., Arrieta, A.A., Fernández Escudero, J.A., Rodríguez Méndez, M.L. and De Saja, J.A. (2006) Electronic Tongue Based on Chemically Modified Electrodes and Voltammetry for the Detection of Adulterations in Wines. Sensors and Actuators B: Chemical, 118, 448-453.

[9]   Wei, Z. and Wang, J. (2011) Detection of Antibiotic Residues in Bovine Milk by a Voltammetric Electronictongue System. Analytica Chimica Acta, 694, 46-56.

[10]   Chen, Q., Zhao, J. and Vittayapadung, S. (2008) Identification of the Green Tea Grade Level Using Electronic Tongueand Pattern Recognition. Food Research International, 41, 500-504.

[11]   Woertz, K., Tissen, C., Kleinebudde, P. and Breitkreutz, J. (2011) A Comparative Study on Two Electronic Tongues for Pharmaceutical Formulation Development. Journal of Pharmaceutical and Biomedical Analysis, 55, 272-281.

[12]   Sun, H., Mo, Z.H., Choy, J.T.S., Zhu, D.R. and Fung, Y.S. (2008) Piezoelectric Quartz Crystal Sensor for Sensing Taste-Causing Compounds in Food. Sensors and Actuators B: Chemical, 131, 148-158.

[13]   Leonte, I.I., Sehra, G., Cole, M., Hesketh, P. and Gardner, J.W. (2006) Taste Sensors Utilizing High-Frequency SH-SAW Devices. Sensors and Actuators B: Chemical, 118, 349.

[14]   Veríssimo, M.I.S., Oliveira, J.A.B.P. and Gomes, M.T.S.R. (2010) Contribution of Compressional Waves to the Identification and Quantification of a Water Contaminant. Sensors and Actuators B: Chemical, 151, 21-25.

[15]   Bogomolov, A. (2011) Multivariate Process Trajectories: Capture, Resolution and Analysis. Chemometrics and Intelligent Laboratory Systems, 108, 49-63.

[16]   Oliveri, P., Casolino, M.C. and Forina, M. (2010) Chapter 2—Chemometric Brains for Artificial Tongues. Advances in Food and Nutrition Research, 61, 57-117.

[17]   Pioggia, G., Di Francesco, F., Marchetti, A., Ferro, M., Leardi, R. and Ahluwalia, A. (2007) A Composite Sensor Array Impedentiometric Electronic Tongue Part II. Discrimination of Basic Tastes. Biosensors and Bioelectronics, 22, 2624-2628.

[18]   Arrieta, A., Rodriguez-Mendez, M.L. and De Saja, J.A. (2003) Langmuir-Blodgett Film and Carbon Paste Electrodes Based on Phthalocyanines as Sensing Units for Taste. Sensors and Actuators B: Chemical, 95, 357-365.

[19]   Tian, S., Deng, S. and Chen, Z. (2007) Multifrequency Large Amplitude Pulse Voltammetry: A Novel Electrochemical Method for Electronic Tongue. Sensors and Actuators B: Chemical, 123, 1049-1056.

[20]   Söderström, C., Borén, H., Winquist, F. and Krantz-Rülcker, C. (2003) Use of an Electronic Tongue to Analyze Mold Growth in Liquid Media. International Journal of Food Microbiology, 83, 253-261.

[21]   Arrieta, A., Apetrei, C., Rodríguez Méndez, M.L. and De Saja, J.A. (2004) Voltammetric Sensor Array Based on Conducting Polymer-Modified Electrodes for the Discrimination of Liquids. Electrochimica Acta, 49, 4543-4551.

[22]   Martini, M. and De Paoli, M. (2002) Effect of the Electrolyte Cations and Anions on the Photocurrent of Dodecylsulphate Doped Polypyrrole Films. Solar Energy Materials and Solar Cells, 73, 235-247.

[23]   Syritski, V., Opik, A. and Forsen, O. (2003) Ion Transport Investigations of Polypyrroles Doped with Differentanions by EQCM and CER Techniques. Electrochimica Acta, 48, 1409-1417.

[24]   Zhao, C. and Jiang, Z. (2004) Polymerization and Redox Behavior of Polypyrrole (PPy) Films by in Situ EQCM and PT Techniques. Applied Surface Science, 229, 372-376.