A Cosmological Model without Singularity Based on RW Metric (1)

Show more

References

[1] Hawking, S.W. and Ellis, G.F.R. (1999) The Large Scale Structure of Space-Time, Cambridge University Press, 7, 98, 101, 137, 256-298.

[2] Brandenberger, R., Mukhanov, V. and Sornborger, A. (1993) Cosmological Theory without Singularities. Physical Review D, 48, 1629-1642. http://dx.doi.org/10.1103/PhysRevD.48.1629

[3] Frolov, V.P, Markov M.A. and Mukhanov V.F. (1990) Black Holes as Possible Sources of Closed and Semiclosed Worlds. Physical Review D, 41, 383-394. http://dx.doi.org/10.1103/PhysRevD.41.383

[4] Caldwell, R.R. (2004) Dark Energy. Physics World, 17, 37-42.

[5] Padmanabhan, T. (2003) Cosmological Constant—The Weight of the Vacuum. Physics Reports, 380, 235-320.
http://dx.doi.org/10.1016/S0370-1573(03)00120-0

[6] Peebles P.J.E. and Ratra, B. (2003) The Cosmological Constant and Dark Energy. Reviews of Modern Physics, 75, 559.
http://dx.doi.org/10.1103/RevModPhys.75.559

[7] Weinberg, S. (1987) Anthropic Bound on the Cosmological Constant. Physical Review Letters, 59, 2607-2610.
http://dx.doi.org/10.1103/PhysRevLett.59.2607

[8] Martel, H., Shapiro, P.R. and Weinberg, S. (1998) Likely Values of the Cosmological Constant. The Astrophysical Journal, 492, 29-40. http://dx.doi.org/10.1086/305016

[9] Peebles, P.J.E. and Ratra, B. (1988) Cosmology with a Time-Variable Cosmological “Constant”. The Astrophysical Journal, 325, L17-L20. http://dx.doi.org/10.1086/185100

[10] Ratra, B. and Peebles, P.J.E. (1988) Cosmological Consequences of a Rolling Homogeneous Scalar Field. Physical Review D, 37, 3406; http://dx.doi.org/10.1103/PhysRevD.37.3406

[11] Peebles, P.J.E. and Ratra, B. (2003) The Cosmological Constant and Dark Energy. Reviews of Modern Physics, 75, 559.
http://dx.doi.org/10.1103/RevModPhys.75.559

[12] Hall, L.J. Nomura Y. and Oliver, S.J., (2005) Evolving Dark Energy with w≠-1. Physical Review Letters, 95, 14.
http://dx.doi.org/10.1103/PhysRevLett.95.141302

[13] Chen, S.H. (2002) Quantum Field Theory without Divergence A. arXiv: hep-th/0203220.

[14] Chen, S.H. (2002) Significance of Negative Energy State in Quantum Field Theory A. arXiv: hep-th/0203230.

[15] Chen, S.H. (2005) Quantum Field Theory without Divergence. In: Kovras, O., Ed., Quantum Field Theory: New Research, Nova Science Publishers, Hauppauge, 103-170.

[16] Chen, S.H. (2001) A Possible Candidate for Dark Matter. arXiv: hep-th/0103234.

[17] Chen, S.H. (2005) A Possible Candidate for Dark Matter. In: Val Blain, J., Progress in Dark Matter Research, Nova Science Publishers, Hauppauge, 65-72.

[18] Peacock, J.A. (1999) Cosmological Physics. Cambridge University Press, 78, 89, 90, 296, 458, 460-464, 579, 664.

[19] Chen, S.-H. (2009) Discussion of a Possible Universal Model without Singularity. arXiv: 0908.1495v2.

[20] Chen, S.-H. (2006) A Possible Universal Model without Singularity and its Explanation for Evolution of the Universe. High Energy Physics—Phenomenology, arXiv:hep-ph/0611283.

[21] Gibbons, G.W. and Hawking, S.W. (1977) Action Integrals and Partition Functions in Quantum Gravity. Physical Review D, 15, 2752. http://dx.doi.org/10.1103/PhysRevD.15.2752

[22] Chaichian, M. and Nelipa, N.F. (1984) Introduction to Gauge Field Theories. Springer-Verlag, Berlin, Heidelberg, 269.

[23] Ross, G.G. (1984) Grand Unified Theories. Benjamin/Cummings Publishing Company, Inc., 177-183.

[24] Weinberg, S. (1972) Gravitation and Cosmology. Wiley, New York, Chapter 12, Section 3.

[25] Coleman, S. and Weiberg, E.J. (1973) Radiative Corrections as the Origin of Spontaneous Symmetry Breaking. Physical Review D, 7, 1888-1910. http://dx.doi.org/10.1103/PhysRevD.7.1888

[26] Brandenberg, R.H. (1985) Quantum Field Theory Methods and Inflationary Universe Models. Reviews of Modern Physics, 57, 1-60. http://dx.doi.org/10.1103/RevModPhys.57.1

[27] Liu, L., Jiang, Y. and Qian, Z. (1989) The Inflationary Universe Scenario in 10?35 Sec after Big-Bang. Progress in Physics, 9, 121-187. (in Chinese)

[28] Guth, A.H. (1981) Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Physical Review D, 23, 347-356. http://dx.doi.org/10.1103/PhysRevD.23.347.53