IJAA  Vol.4 No.1 , March 2014
On the Expanding Earth and Shrinking Moon

Exactly 101 years ago, German scientist Alfred Lothar Wegener, sailed against the prevailing wisdom of his day when he posited that not only have the Earth’s continental plates receded from each other over the course of the Earth’s history, but that they are currently in a state of motion relative to one another. To explain this, Wegener set forth the hypothesis that the Earth must be expanding as a whole. Wegener’s inability to provide an adequate explanation of the forces and energy source responsible for continental drift and the prevailing belief that the Earth was a rigid solid body resulted in the acrimonious dismissal of his theories. Today, that the continents are generally receding from each other is no longer a point of debate but a sacrosanct pillar of modern geology and geophysics. What is debatable is the energy source driving this phenomenon. Herein, we hold that continental drift is a result of the Earth undergoing a secular radial expansion. An expanding Earth hypothesis is currently an idea that is not accepted on a general consensus level. Be thatas it may, we show herein that the law of conservation of angular momentum and energy entail that the Earth must not only expand as a consequence of the secular recession of the Earth-Moon system from the Sun, but invariably, that the Moon must contract as well. As a result, the much sort for energy source driving plate tectonics can (hypothetically) be identified with the energy transfers occurring between the orbital and rotational kinetic energy of the Earth. If our calculations are to be believed—as we do; then, the Earth must be expanding radially at a paltry rate of about +1.50 mm/yr while the Moon is contracting radially at a relatively high rate of about -410 mm/yr.

Cite this paper: Nyambuya, G. (2014) On the Expanding Earth and Shrinking Moon. International Journal of Astronomy and Astrophysics, 4, 227-243. doi: 10.4236/ijaa.2014.41020.

[1]   Mantovani, R. (1909) L’antarctide, Je minstruis. La Scieence Pour Tous, 38, 595-597.

[2]   R. Mantovani (1889) Les Fractures de Lécorce Terrestre et la Théorie de Laplace. Bulletin de la Société des Sciences et Arts de l’Ile de la Réunion, 4153.

[3]   W. Z.W., Xu, J.Y., Jiao, Y., Fan, S.-J., He, K. and Qin, L.-Q. (2012) Finger Nail Growth Rate and Macroelement Levels Determined by ICP-OES in Healthy Chinese College Students. Polish Journal of Environmental Studies, 21, 1067-1070.

[4]   Yaemsiri, S., Hou, N., Slining, M.M. and He, K. (2010) Growth Rate of Human Fingernails and Toenails in Healthy American Young Adults. Journal of the European Academy of Dermatology and Venereology, 24, 420-423.

[5]   Krasinsky, G.A. and Brumberg, V.A. (2004) Secular Increase of Astronomical Unit from Analysis of the Major Planets Motions, and Its Interpretation. Annalen der Physik, 90, 267-288.

[6]   Standish, E.M. (2005) The Astronomical Unit Now. In: Kurtz, D.W., Ed., Transits of Venus: New Views of the Solar System and Galaxy, Proceedings IAU Colloquium, Cambridge University Press, Cambridge, 163-179.

[7]   J. Romm (1994) A New Forerunner for Continental Drift. Nature, 367, 407-408.

[8]   Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lul, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K. and Vernikovsky, V. (2008) Assembly, Configuration, and Break-Up History of Rodinia: A Synthesis. Precambrian Research, 160,179-210. 021

[9]   Wegener, A.L. (1912) Die Entstehung der Kontinente. Geologische Rundschau, 3, 276-292.

[10]   Wegener, A.L. (1912) Die Entstehung der Kontinente. Petermann’s Geographische Mitteilungen, 58, 185-195, 253-256,305-308.

[11]   du Toit, A.L. (1937) Our Wandering Continents; An Hypothesis of Continental Drifting. Oliver & Boyd, London.

[12]   Wegener, A.L. (1915) Die Entstehung der Kontinente und Ozean. 2nd Edition, Friedrich Vieweg & Sohn, Braunschweig.

[13]   Wegener, A.L. (1922) Die Entstehung der Kontinente und Ozeane. 3rd Edition, Friedrich Vieweg & Sohn, Braunschweig.

[14]   Wegener, A.L. (1929) Die Entstehung der Kontinente und Ozeane. 4th edition, Friedrich Vieweg & Sohn, Braunschweig.

[15]   Hilgenberg, O.C. (1962) Palaopollagen der erde. Neues Jahrbuch für Geologie und Pal?ontologie, 116, 156.

[16]   Hilgenberg, O.C. (1933) Vom wachsenden erdball. Giessmann and Bartsch, Berlin.

[17]   Beck, A.E. (1982) Energy changes in an Expanding Earth: In the Application of Modern Physics to the Earth and Planetary Interiors. Wiley, London, 77-83.

[18]   Cook, M. A. and Eardley, A.J. (1961) Energy Requirements in Terrestrial Expansion. Journal of Geophysical Research, 66, 3907-3912.

[19]   Jordan, P. (1971) The Expanding Earth: Some Consequences of Dirac’s Gravitation Hypothesis. Pergamon, Oxford, 202.

[20]   Scheidegger, A.E. (1982) Principles of Geodynamics. Springer-Verlag, Heidelberg.

[21]   Carey, S.W. (1975) The Expanding Earth—An Essay Review. Earth Science Reviews, 11, 105-143.

[22]   Stephenson, F.R. (1997) Historical Eclipses and Earth’s Rotation. Cambridge University Press, Cambridge.

[23]   Stephenson, F.R. and Morrison, L.V. (1995) Long-term Fluctuations in the Earth’s Rotation: 700 BC to AD 1990. Phil. Trans. R. Soc. Lond. A, 351, 165-202.

[24]   Nyambuya, G. G. (2013) Why the Earth Must Expand. viXra: 1212.0107v1.

[25]   Wu, X., Collilieux, X., Altamimi, Z., Vermeersen, B.L.A., Gross, R.S. and Fukumori, I. (2011) Accuracy of the International Terrestrial Reference Frame Origin and Earth Expansion. Geophysical Research Letters, 38, 5.

[26]   Williams, J.G. and Boggs, D.H. (2009) Lunar Core and Mantle. What Does LLR See. In: S. Schillak, Ed., Proceedings of the 16th International Workshop on Laser Ranging, Space Research Centre, Polish Academy of Sciences.

[27]   Chapront, J., Chapront-Touze, M. and Francou. G. (2002) A New Determination of Lunar Orbital Parameters, Precession Constant and Tidal Acceleration from llr Measurements. Astronomy & Astrophysics, 387, 700-709.

[28]   Pitjeva, E.V. (2005) High-Precision Ephemerids of Planets-EPM and Determinations of Some Astronomical Constants. Solar System Research, 39, 176-186.

[29]   Zwicky, F. (1933) Die Rotverschiebung von Extragalaktischen Nebeln. Helvetica Physica Acta, 6, 110-127.

[30]   Anderson, J.D., Laing, P.A., Lau, E.L., Liu, A.S., Nieto, M.M. and Turyshev, S.G. (1998) Indication, from Pioneer 10/ 11, Galileo, and Ulysses Data, of an Apparent Anomalous, Weak, Long-Range Acceleration. Physical Review Letters, 81, 2858-2861. 2858.

[31]   Anderson, J.D., Laing, P.A., Lau, E.L., Liu, A.S., Nieto, M.M. and Turyshev, S.G. (2002) Study of the Anomalous Acceleration of Pioneer 10 and 11. Physical Review D, 65, arXiv: gr-qc/0104064.

[32]   Anderson, J.D., Campbell, J.K., Ekelund, J.E., Ellis, J. and Jordan, J.F. (2008) Anomalous Orbital-Energy Changes Observed during Spacecraft Flybys of Earth. Physical Review Letters, 100, 091102.

[33]   Anderson, J.D. and Neito, M.M. (2009) Astrometric Solar-System Anomalies. In: Klioner, S. and Seidelmann, P.K. and Soffel, M., Eds., Relativity in Fundamental Astronomy: Dynamics, Reference Frames, and Data Analysis, Proceedings IAU Symposium, International Astronomical Union, 165.

[34]   Einstein, A. (1916) Die Grundlage der Allgemeinen Relativit?tstheorie. Annalen der Physik, 354, 769-822.

[35]   Nyambuya, G.G. (2010) Azimuthally Symmetric Theory of Gravitation (I)—On the Perihelion Precession of Planetary Orbits. MNRAS, 403, 1381-1391.

[36]   Taylor, J.R. (1982) Introduction to Error Analysis. University Science Books, Sausalito.

[37]   E.M. Standish and J.C. Williams (2010) Orbital Ephemerides of the Sun, Moon, and Planets. Explanatory Supplement to the Astronomical Almanac, Chapter 8, International Astronomical Union Commission, 1381-1391.

[38]   Watters, T.R., Robinson, M.S., Beyer, R.A., Banks, M.E., Bell III, J.F., Pritchard, M.E., Hiesinger, H., van der Bogert, C.H., Thomas, P.C., Turtle, E.P. and Williams, N.R. (2010) Evidence of Recent Thrust Faulting on the Moon Revealed by the Lunar Reconnaissance Orbiter Camera. Science, 329, 936-939.

[39]   Binder, A.B. and Gunga, H.-C. (1985) Morphometric Analysis of Small-Scale Lobate Scarps on the Moon Using Data from the Lunar Reconnaissance Orbiter. Icarus, 117, 421.

[40]   Banks, M.E., Watters, T.R., Robinson, M.S., Tornabene, L.L., Tran, T., Ojha, L. and Williams, N.R. (2012) Morphometric Analysis of Small-Scale Lobate Scarps on the Moon Using Data from the Lunar Reconnaissance Orbiter. Journal of Geophysical Research, 117, 11. JE003907

[41]   Watters, T.R. and Robinson, M.S. and Banks, M.E. and Tran, T. and Denevi, B.W. (2012) Recent Extensional Tectonics on the Moon Revealed by the Lunar Reconnaissance Orbiter Camera. Nature Geoscience, 329, 936-939.

[42]   Turcotte, D.L. and Schubert, G. (2002) Geodynamics. Cambridge University Press, Cambridge.

[43]   Pollack, H.N., Hurter, S.J. and Johnson, J. R. (1993) Heat Flow from the Earth’s Interior: Analysis of the Global Data Set. Reviews of Geophysics, 31, 267-280.