AM  Vol.2 No.3 , March 2011
Lp Inequalities for Polynomials
Abstract: In this paper we consider a problem of investigating the dependence of on for every real or complex number with , , and present certain compact generali- zations which, besides yielding some interesting results as corollaries, include some well-known results, in particular, those of Zygmund, Bernstein, De-Bruijn, Erdös-Lax and Boas and Rahman as special cases.
Cite this paper: nullA. Aziz and N. Rather, "Lp Inequalities for Polynomials," Applied Mathematics, Vol. 2 No. 3, 2011, pp. 321-328. doi: 10.4236/am.2011.23038.

[1]   G. V. Milovanovic, D. S. Mitrinovic and T. M. Rassias, “Topics in Polynomials: Extremal Properties, Inequalities, Zeros,” World Scientific Publishing Company, Singapore, 1994.

[2]   A. C. Schaffer, “Inequalities of A. Markoff and S. Bernstein for Polynomials and Related Functions,” Bulletin American Mathematical Society, Vol. 47, No. 2, 1941, pp. 565-579. doi:10.1090/S0002-9904-1941-07510-5

[3]   G. Pólya and G. Szeg?, “Aufgaben und Lehrs?tze aus der Analysis,” Springer-Verlag, Berlin, 1925.

[4]   A. Zygmund, “A Remark on Conjugate Series,” Proceedings of London Mathematical Society, Vol. 34, 1932, pp. 292-400. doi:10.1112/plms/s2-34.1.392

[5]   G. H. Hardy, “The Mean Value of the Modulus of an Analytic Function,” Proceedings of London Mathematical Society, Vol. 14, 1915, pp. 269-277.

[6]   Q. I. Rahman and G. Schmeisser, “Les in Ualitués de Markoff et de Bernstein,” Presses University Montréal, Montréal, 1983.

[7]   M. Riesz, “Formula d’interpolation Pour la Dérivée d’un Polynome Trigonométrique,” Comptes Rendus de l' Academie des Sciences, Vol. 158, 1914, pp. 1152-1254.

[8]   V. V. Arestov, “On Integral Inequalities for Trigonometric Polynimials and Their Derivatives,” Mathematics of the USSR-Izvestiya, Vol. 18, 1982, pp. 1-17. doi:10.1070/IM1982v018n01ABEH001375

[9]   N. G. Bruijn, “Inequalities Concerning Polynomials in the Complex Domain,” Nederal. Akad. Wetensch. Proceeding, Vol. 50, 1947, pp. 1265-1272.

[10]   Q. I. Rahman and G. Schmessier, “ Inequalities for Polynomials,” The Journal of Approximation Theory, Vol. 53, 1988, pp. 26-32. doi:10.1016/0021-9045(88)90073-1

[11]   R. P. Boas, Jr., and Q. I. Rahman, “ Inequalities for Polynomials and Entire Functions,” Archive for Rational Mechanics and Analysis, Vol. 11, 1962, pp. 34-39. doi:10.1007/BF00253927

[12]   A. Aziz and N. A. Rather, “ Inequalities for Polynomials,” Glasnik Matematicki, Vol. 32, No. 52, 1997, pp. 39-43.

[13]   P. D. Lax, “Proof of a Conjecture of P. Erdos on the Derivative of a Polynomial,” Bulletin of American Mathematical Society, Vol. 50, 1944, pp. 509-513. doi:10.1090/S0002-9904-1944-08177-9

[14]   N. C. Ankeny and T. J. Rivlin, “On a Theorm of S. Bernstein,” Pacific Journal of Mathematics, Vol. 5, 1955, pp. 849-852.

[15]   A. Aziz and N. A. Rather, “Some Compact Generalization of Zygmund-Type Inequalities for Polynomials,” Nonlinear Studies, Vol. 6, No. 2, 1999, pp. 241-255.

[16]   A. Aziz, “A New Proof and a Generalization of a Theorem of De Bruijn,” Proceedings of American Mathematical Society, Vol. 106, No. 2, 1989, pp. 345-350.

[17]   K. K. Dewan and N. K. Govil, “An Inequality for Self- Inversive Polynomials,” Journal of Mathematical Analysis and Application, Vol. 95, No. 2, 1983, p. 490. doi:10.1016/0022-247X(83)90122-1