[1] Ferraz, H.M.C. and Goncalo, E.R.S. (2007) Recent Preparations and Synthetic Applications of Enaminones. Química Nova, 30, 957-964.
http://dx.doi.org/10.1590/S0100-40422007000400035
[2] Riyadh, S.M., Abdelhamid, I.A., Al-Matar, H.M., Hilmy, N.M. and Elnagdi, M.H. (2008) Enamines as Precursors to Polyfunctional Heteroaromatic Compounds; a Decade of Development. Heterocycles, 75, 1849-1905.
http://dx.doi.org/10.3987/REV-07-625
[3] Elassar, A.Z.A. and El-Khair, A.A. (2003) Recent Developments in the Chemistry of Enaminones. Tetrahedron, 59, 8463-8480.
http://dx.doi.org/10.1016/S0040-4020(03)01201-8
[4] Stanovnik, B. and Svete, J. (2004) Synthesis of Heterocycles from Alkyl 3-(Dimethylamino)Propenoates and Related Enaminones. Chemical Reviews, 104, 2433-2480.
http://dx.doi.org/10.1021/cr020093y
[5] Yermolayev, S.A., Gorobets, N.Y., Lukinova, E.V., Shishkin, O.V., Shishkina, S.V. and Desenko, S.M. (2008) An Efficient Synthesis of N1-Substituted 2,5-Dioxo-1,2,5,6,7,8-Hexahydro 3-Quinolinecarboxamide via Enolate Salts. Tetrahedron, 64, 4649-4655.
http://dx.doi.org/10.1016/j.tet.2008.02.095
[6] Gorobets, N.Y., Yousefi, B.H., Belaj, F. and Kappe, C.O. (2004) Rapid Microwave-Assisted Solution Phase Synthesis of Substituted 2-Pyridone Libraries. Tetrahedron, 60, 8633-8644.
http://dx.doi.org/10.1016/j.tet.2004.05.100
[7] Drews, J. (2000) Drug Discovery: A Historical Perspective. Science, 287, 1960-1964.
http://dx.doi.org/10.1126/science.287.5460.1960
[8] Supuran, C.T., Casini, A. and Scozzafava, A. (2003) Protease Inhibitors of the Sulfonamide Type: Anticancer, Antiinflammatory, and Antiviral Agents. Medicinal Research Reviews, 23, 535.
http://dx.doi.org/10.1002/med.10047
[9] Supuran, C.T. and Scozzafava, A. (2000) Carbonic Anhydrase Inhibitors and Their Therapeutic Potential. Expert Opinion on Therapeutic Patents, 10, 575-600.
[10] Ghorab, M.M., Ragab, F.A., Heiba, H.I., Arafa, R.K. and El-Hossary, E.M. (2011) Docking Study, in Vitro Anticancer Screening and Radiosensitizing Evaluation of Some New Fluorine-Containing Quinoline and Pyrimidoquinoline Derivatives Bearing a Sulfonamide Moiety. Medicinal Chemistry Research, 20, 388-400.
http://dx.doi.org/10.1007/s00044-010-9332-3
[11] Boyd 3rd, A.E. (1988) Sulfonylurea Receptors, Ion Channels, and Fruit Flies. Diabetes, 37, 847-850.
http://dx.doi.org/10.2337/diab.37.7.847
[12] Kamel, M.M., Ali, H.I., Anwar, M.M., Mohamed, N.A. and Soliman, A.M. (2010) Synthesis, Antitumor Activity and Molecular Docking Study of Novel Sulfonamide-Schiff’s Bases, Thiazolidinones, Benzothiazinones and Their C-Nucleoside Derivatives. European Journal of Medicinal Chemistry, 45, 572-580.
http://dx.doi.org/10.1016/j.ejmech.2009.10.044
[13] Nair, B. and Taylor-Gjevre, R. (2010) A Review of Topical Diclofenac Use in Musculoskeletal Disease. Pharmaceuticals, 3, 1892-1908.
http://dx.doi.org/10.3390/ph3061892
[14] Gabriel, S.E. and Matteson, E.L. (1995) Economic and Quality-of-Life Impact of NSAIDs in Rheumatoid Arthritis: A Conceptual Framework and Selected Literature Review. Pharmacoeconomics, 8, 479-490.
http://dx.doi.org/10.2165/00019053-199508060-00004
[15] Zochling, J., Bohl-Bühler, M.H.J., Baraliakos, X., Feldtkeller, E. and Braun, J. (2006) Nonsteroidal Anti-Inflammatory Drug Use in Ankylosing Spondylitis—A Population-Based Survey. Clinical Rheumatology, 25, 794-800.
http://dx.doi.org/10.1007/s10067-005-0132-y
[16] Hochberg, M.C. (2005) COX-2 Selective Inhibitors in the Treatment of Arthritis: A Rheumatologist Perspective. Current Topics in Medicinal Chemistry, 5, 443-448.
http://dx.doi.org/10.2174/1568026054201695
[17] Warden, J.S. (2010) Prophylactic Use of NSAIDs by Athletes: A Risk/Benefit Assessment. The Physician and Sports Medicine, 38, 132-138.
http://dx.doi.org/10.3810/psm.2010.04.1770
[18] Guyton, C.A. and Hall, J.E. (1998) Textbook of Medical Physiology. 9th Edition, Harcourt Asia Pte. Ltd.
[19] Vane, J.R., Bakhle, Y.S. and Bolting, R.M. (1998) Cyclooxygenases 1 and 2. Annual Review of Pharmacology and Toxicology, 38, 97-120.
http://dx.doi.org/10.1146/annurev.pharmtox.38.1.97
[20] Guslandi, M. (1997) Gastric Toxicity of Antiplatelet Therapy with Low-Dose Aspirin. Drugs, 53, 1-5.
http://dx.doi.org/10.2165/00003495-199753010-00001
[21] Mazumdar, K., Dutta, N., Dastidar, S., Motohashi, N. and Shirataki, Y. (2006) Diclofenac in the Management of E. coli Urinary Tract Infections. In Vivo, 20, 613-619.
[22] Dutta, N., Annadurai, S., Mazumdar, K., Dastidar, S.G., Kristiansen, J., Molnar, J., Martins, M. and Amaral, L. (2000) The Antibacterial Action of Diclofenac Shown by Inhibition of DNA Synthesis. International Journal of Antimicrobial Agents, 14, 249-251.
http://dx.doi.org/10.1016/S0924-8579(99)00159-4
[23] Sriram, D., Yogeeswari, P. and Devakaram, R. (2006) Synthesis, in Vitro and in Vivo Antimycobacterial Activities of Diclofenac Acid Hydrazones and Amides. Bioorganic & Medicinal Chemistry, 14, 3113-3118.
http://dx.doi.org/10.1016/j.bmc.2005.12.042
[24] Bhandari, S., Bothara, K., Raut, M., Patil, A., Sarkate, A. and Mokale, J. (2008) Design, Synthesis and Evaluation of Anti-Inflammatory, Analgesic and Ulcerogenicity Studies of Novel S-Substituted Phenacyl-1,3,4-Oxadiazole-2-Thiol and Schiff Bases of Diclofenac Acid as Nonulcer-ogenic Derivatives. Bioorganic & Medicinal Chemistry, 16, 1822-1831.
http://dx.doi.org/10.1016/j.bmc.2007.11.014
[25] Amir, M. and Shikha, K. (2004) Synthesis and Anti-Inflammatory, Analgesic, Ulcerogenic and Lipid Peroxidation Activities of Some New 2-[(2, 6-Dichloroanilino) Phenyl]Acetic Acid Derivatives. European Journal of Medicinal Chemistry, 39, 535-545.
http://dx.doi.org/10.1016/j.ejmech.2004.02.008
[26] Barbaric, M., Kralj, M., Marjanovic, M., Husnjak, I., Pavelic, K., Filipovic Grcic, J., Zorc, D. and Zorc, B. (2007) Synthesis and in Vitro Antitumor Effect of Diclofenac and Fenoprofen Thiolated and Nonthiolated Polyaspartamide-Drug Conjugates. European Journal of Medicinal Chemistry, 42, 20-29.
http://dx.doi.org/10.1016/j.ejmech.2006.08.009
[27] Oza, V., Smith, C., Raman, P., Koepf, E., Lashuel, H., Petrassi, H., Chiang, K., Powers, P., Sachettinni, J. and Kelly, J. (2002) Synthesis, Structure, and Activity of Diclofenac Analogues as Transthyretin Amyloid fibril Formation Inhibitors. Journal of Medicinal Chemistry, 45, 321-332.
http://dx.doi.org/10.1021/jm010257n
[28] Ramesh, K., Narayana Murthy, S., Karnakar, K. and Nageswar, Y.V.D. (2011) DABCO-Promoted Three-Component Reaction between Amines, Dialkyl Acetylenedicarboxylates, and Glyoxal. Tetrahedron Letters, 52, 3937-3941.
http://dx.doi.org/10.1016/j.tetlet.2011.05.100
[29] Hafiz, I.S. (2000) Enaminonitriles in Heterocyclic Synthesis: Synthesis of New 1, Dihydropyridine Pyrazolo [1, 5-a] Pyrimidine, Aminothiophene and Pyridine Derivatives. Zeitschrift fur Naturforschung, 55, 321.
[30] Kiefer, J.R., Pawlitz, J.L., Moreland, K.T., Stegeman, R.A., Hood, W.F., Gierse, J.K., Steven, A.M., Goodwin, D.C., Rowlinson, S.W., Marnett, L.J., Stallings, W.C. and Kurumbail, R.G. (2000) Structural Insights into the Stereochemistry of the Cyclooxygenase Reaction. Nature, 405, 97-101.
[31] Eweiss, N.F. and Osman, A. (1980) Synthesis of Heterocycles. Part II. New Routes to Acetylthiadiazolines and Alkyla-zothiazoles. Journal of Heterocyclic Chemistry, 17, 1713-1718.
http://dx.doi.org/10.1002/jhet.5570170814
[32] Nagakura, M., Ota, T., Shimadzu, N., Kawamura, K., Eto, Y. and Wada, Y. (1979) Syntheses and Antiinflammatory Actions of 4,5,6,7-Tetrahydroindazole-5-Carboxylic Acids. Journal of Medical Chemistry, 22, 48-52.
http://dx.doi.org/10.1021/jm00187a012
[33] Shawali, A.S. and Abdelhamide, A.O. (1976) Reaction of Dimethylphenacylsulfonium Bromide with N-Nitrosoacetarylamides and Reactions of the Products with Nucleophiles. Bulletin of the Chemical Society of Japan, 49, 321-324.
http://dx.doi.org/10.1246/bcsj.49.321
[34] Al-Zaydi, K.M. (2003) Microwave Assisted Synthesis, Part 1: Rapid Solventless Synthesis of 3-Substituted Coumarins and Benzocoumarins by Microwave Irradiation of the Corresponding Enaminones. Molecules, 8, 541-555.
http://dx.doi.org/10.3390/80700541
[35] Biere, H., Böttcher, I. and Kapp, J. (1983) Nonsteroidal Anti-Inflammatory Agents. 11. Antiphlogistic Pyrazole Derivatives, III. Archiv der Pharmazie (Weinheim), 316, 608-616.
[36] El-Taweel, F.M. and Elnagdi, M.H. (2001) Studies with Enaminones: Synthesis of New Coumarin-3-yl Azoles, Coumarin-3-yl Azines, Coumarin-3-yl Azoloazines, Coumarin-3-yl Pyrone and Coumarin-2-yl Benzo[b]Furans. Journal of Heterocyclic Chemistry, 38, 981-984.
http://dx.doi.org/10.1002/jhet.5570380428
[37] Hochgesang, G.P. and Marnett, L.J. (2000) Tyrosine-385 Is Critical for Acetylation of Cyclooxygenase-2 by Aspirin. Journal of the American Chemical Society, 122, 6514-6515.
http://dx.doi.org/10.1021/ja0003932
[38] Rowlinson, S.W., Kiefer, J.R., Prusakiewcz, J.J., Pawlitz, J.L., Kozak, K.R., Kalgutkar, A.S., Stallings, W.C., Kurumbail, R.G. and Marnett, L. (2003) A Novel Mechanism of Cyclooxygenase-2 Inhibition Involving Interactions with Ser-530 and Tyr-385. Journal of Biological Chemistry, 278, 45763-45769.
http://dx.doi.org/10.1074/jbc.M305481200
[39] Kurumbail, R.G., Stevens, A.M., Gierse, J.K., McDonald, J.J., Stegeman, R.A., Pak, J.Y., Gildehaus, D., Miyashiro, J.M., Penning, T.D., Seibert, K., Isakson, P.C. and Stallings, W.C. (1996) Structural Basis for Selective Inhibition of Cyclooxygenase-2 by Anti-Inflammatory Agents. Nature, 384, 644-648.
http://dx.doi.org/10.1038/384644a0
[40] Sidhu, R.S., Lee, J.Y., Yuan, C. and Smith, W.L. (2010) Comparison of Cyclooxygenase-1 Crystal Structures: Cross-Talk between Monomers Comprising Cyclooxygenase-1 Homodimers. Biochemistry, 49, 7069-7079.
http://dx.doi.org/10.1021/bi1003298
[41] Chemical Computing Group. Inc., MOE, 2009, 10.
[42] Halgren, T.A. (1996) Merck Molecular Force Field I. Basis, Form, Scope, Parameterization, and Performance of MMFF94. Journal of Computational Chemistry, 17, 490-519.
http://dx.doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
[43] Clark, D.E. and Pickett, S.D. (2000) Computational Methods for the Prediction of ‘Drug-Likeness’. Drug Discovery Today, 5, 49-58.
http://dx.doi.org/10.1016/S1359-6446(99)01451-8
[44] Wildman, S.A. and Crippen, G.M. (1999) Prediction of Physicochemical Parameters by Atomic Contribution. Journal of Chemical Information and Computer Sciences, 39, 868-873.
http://dx.doi.org/10.1021/ci990307l
[45] Fukui, K. (1982) Role of Frontier Orbitals in Chemical Reactions. Science, 218, 747-754.
http://dx.doi.org/10.1126/science.218.4574.747
[46] Jose, A.P. and Robert, R.S. (1991) Carbene/Anion Complexes. Unusual Structural and Thermochemical Features of .Alpha.-Halocarbanions in the Gas Phase. Journal of the American Chemical Society, 113, 1845-1847.
[47] Parr, R.G., Szentpaly, L.V. and Liu, S. (1999) Electrophilicity Index. Journal of the American Chemical Society, 121, 1922-1924.
http://dx.doi.org/10.1021/ja983494x
[48] Chattaraj, P.K., Maiti, B. and Sarkar, U. (2003) Philicity: A Unified Treatment of Chemical Reactivity and Selectivity. The Journal of Physical Chemistry A, 107, 4973-4975.
http://dx.doi.org/10.1021/jp034707u
[49] Parr, R.G., Donnelly, R.A., Levy, M. and Palke, W.E. (1978) Electronegativity: The Density Functional Viewpoint. The Journal of Chemical Physics, 68, 3801-3814.
http://dx.doi.org/10.1063/1.436185
[50] Parr, R.G. and Pearson, R.G. (1983) Absolute Hardness: Companion Parameter to Absolute Electronegativity. Journal of the American Chemical Society, 105, 7512-7516.
http://dx.doi.org/10.1021/ja00364a005
[51] Parr, R.G. and Yang, W. (1989) Density Functional Theory of Atoms and Molecules. Oxford University Press, Oxford.