IJAA  Vol.1 No.1 , March 2011
Effect of Interplanetary Matter on the Spin Evolutions of Venus and Mercury
Differs from other planets in the Solar System, the Venus has a retrograde and long-period rotation. To ex-plain the special spin of the Venus, mechanisms such as core mantle friction inside planet[1], atmospheric tide[2-7], or twain effects together[8-11], and impact with a giant object[12,13] have been suggested. These mecha-nisms, however, need specific initial conditions with a remote probability [3,5]. The slow spin of Mercury cannot be explained very well. One viewpoint is that the unusual spins of Venus and Mercury might be naturally evolved from similar initial states by interaction with interplanetary matter during long-time evolu-tion. Based on the theory of planet formation and the orderliness of planetary distance, we discuss the possi-bility that the radial density distribution of interplanetary matter is undulated, and the wave function satisfies the formal Schrödinger equation. We calculate the evolution of planet spins under the effect of interplanetary matter during planets revolution and rotation. The results show that planets can naturally evolve to the cur-rent state (particularly the negative spin of the Venus) given the similar initial quick and positive spins.

Cite this paper
nullQ. Nie, C. Li and F. Liu, "Effect of Interplanetary Matter on the Spin Evolutions of Venus and Mercury," International Journal of Astronomy and Astrophysics, Vol. 1 No. 1, 2011, pp. 1-5. doi: 10.4236/ijaa.2011.11001.
[1]   A. C. M. Correia, “The Core Mantle Friction Effect on the Secular Spin Evolution of Terrestrial Planets,” Earth and Planetary Science Letters, Vol. 252, No. 3-4, 2006, pp. 398-412. doi:10.1016/j.epsl.2006.10.007

[2]   W. Kundt, “Spin and atmospheric Tides of Venus,” Astronomy & Astrophysics, Vol. 60, No. 1, 1977, pp. 85-91.

[3]   A. R. Dobrovolskis, “Atmospheric Tides and the Rotation of Venus. II-Spin Evolu-tion,” Icarus, Vol. 41, 1980, pp. 18-35. doi:10.1016/0019-1035(80)90157-8

[4]   J. McCue, J. R. Dormand and A. M. Gadian, “Estimates of Venusian Atmos-pheric Torque,” Engineering Management & Planning, Vol. 57, 1992, pp. 1-11.

[5]   J. McCue and J. R. Dormand, “Evolution of the Spin of Venus,” Engineering Management & Planning, Vol. 63, 1993, pp. 209-225.

[6]   J. Laskar and P. Robutel, “The Chaotic Obliquity of the Planets,” Nature, Vol. 361, No. 6413, 1993, pp. 608-612. doi:10.1038/361608a0

[7]   A. C. M. Correia, et al., “Long-Term Evolution of the Spin of VenusI. Theory,” Icarus, Vol. 163, 2003, pp. 1-23. doi:10.1016/S0019-1035(03)00042-3

[8]   A. C. M. Correia and J. Laskar, “The Four Final Rotation States of Venus,” Na-ture, Vol. 411, No. 6839, 2001, pp. 767-770. doi:10.1038/35081000

[9]   P. Goldreich and S. J. Peale, “The Obliquity of Venus,” The Astronomical Journal, Vol. 75, 1970, pp. 273-285. doi:10.1086/110975

[10]   B. Lago and A. Cazenave, “Possible Dynamical Evolution of the Rotation of Venus since Forma-tion,” M&P, Vol. 21, 1979, pp. 127-154.

[11]   M. Shen and C. Z. Zhang, “Dynamical Evolution of the Rotation of Venus,” Engineering Management & Planning, Vol. 43, 1988, pp. 275-287.

[12]   S. F. Singer, “How Did Venus Lose Its Angular Momentum,” Science, Vol. 170, No. 69, 1970, pp. 1196-1198. doi:10.1126/science.170.3963.1196

[13]   S. Tremaine and L. Dones, “On the Statistical Distribution of Massive Impactors,” Icarus, Vol. 106, 1993, pp. 335-341. doi:10.1006/icar.1993.1175

[14]   K. Lodders, “Solar System Abundances and Condensation Temperatures of the Elements,” The Astrophysical Journal, Vol. 591, No. 2, 2003, pp. 1220-1247. doi:10.1086/375492

[15]   P. W. Blum and H. J. Fahr, “Interac-tion between Interstellar Hydrogen and the Solar Wind,” As-tronomy & Astrophysics, Vol. 4, 1970, pp. 280-290.

[16]   V. Bromm, A. Ferrara, P. S. Coppi and R. B. Larson, “The Frag-mentation of Pre-Enriched Primordial Objects,” Monthly No-tices of the Royal Astronomical Society, Vol. 328, No. 3, 2001, pp. 969-976. doi:10.1046/j.1365-8711.2001.04915.x

[17]   Q. X. Nie, “Simulated Quantum Theory for Seeking the Mystery of Regu-larity of Planetary Distances,” Acta astronomy Sin., Vol. 34, 1993, pp. 333-340.

[18]   Q. X. Nie, “The Characteristics of Orbital Distribution of Kuiper Belt objects,” Chin. J. Astron. Astrophys, Vol. 27, 2003, pp. 94-98.

[19]   D. L. Padgett, et al., “Hubble Space Telescope/Nicmos Imaging of Disks and Enve-lopes around Very Young Stars,” The Astronomical Journal, Vol. 117, No.3, 1999, pp. 1490-1504. doi:10.1086/300781

[20]   K. R. Stapelfeldt, et al., “An Edge-On Circumstellar Disk in the Young Binary System HK Tauri,” American Politics Journal, Vol. 502, 1998, pp. L65-L69.

[21]   M. J. McCaughrean, et al., “High-Resolution Near-Infrared Imaging of the Orion 114-426 Silhouette Disk,” American Politics Journal, Vol. 492, 1998, L157-L161.

[22]   S. Wolf, D. L. Padgett and K. R. Stapelfeldt, “The Cir-cumstellar Disk of the Butterfly Star in Taurus,” American Politics Journal, Vol. 588, 2003, pp. 373-386.

[23]   K. W. Wood, J. Michael, J. E. Bjorkman and B. Whitney, “The Spec-tral Energy Distribution of HH 30 IRS: Constraining the Cir-cumstellar Dust Size Distribution,” American Politics Journal, Vol. 564, 2002, pp. 887-895.

[24]   A. G. W. Cameron, “Origin of the Solar System,” Annual Review of Astronomy and Astro-physics, Vol. 26, 1988, pp. 441-472. doi:10.1146/annurev.aa.26.090188.002301

[25]   M. C. Wyatt, R. Smith, J. S. Greaves, C. A. Beichman, G. Bryden and C.M. Lisse, “Transience of Hot Dust around Sun-Like Stars,” American Politics Journal, Vol. 658, 2007, pp. 569-583.

[26]   P. R. Weissman, L. A. McFadden and T. V. Johnson, “Encyclopedia of the Solar System,” Academic Press, San Diego, 2006.

[27]   E. Dwek, R. G. Arendt and F. Krennrich, “The Near-Infrared Background: Interplanetary Dust or Primordial Stars,” American Politics Journal, Vol. 635, 2005, pp. 784-794.