Back
 AJAC  Vol.5 No.4 , March 2014
On-Chip Capillary Electrophoresis (Chip-CE) with Optical On-Chip Leaky-Waveguide-Based Detection
Abstract: Capillary electrophoresis (CE) suffers from a relatively small sensitivity—at least in case of optical detection transversely to the capillary axis due to the small capillary inner diameters in the range of 50 - 100 μm. Different concepts like bubble, U-, or Z-cells have been used to tackle that problem already in the nineties of the last century. But the U- and Z-cells have typically been extra cells with larger inner channel diameters and no optimization for optical waveguiding and the bubble cell per se did not allow for optical waveguiding. In the case of on-chip capillary electrophoresis (chip-CE) a U-cell can be implemented quite easily on the chip. Here we show how leaky optical waveguiding can be employed to improve optical detection. Proper U-channel design and preparation by wet-chemical etching of the fused silica sub- and superstrate, making the U-channel bend a part of the optical input lens system, can help to achieve high coupling efficiency with loss coefficients around 2 dB and low waveguiding loss.
Cite this paper: Doering, C. , Grewe, M. , Steingoetter, I. and Fouckhardt, H. (2014) On-Chip Capillary Electrophoresis (Chip-CE) with Optical On-Chip Leaky-Waveguide-Based Detection. American Journal of Analytical Chemistry, 5, 243-248. doi: 10.4236/ajac.2014.54030.
References

[1]   Hewlett-Packard (Now Agilent Technologies) (1992) Product Specifications on Capillaries with Bubble Cell.

[2]   Kaltenbach, P. (1995) A High-Sensitivity Diode Array Detector for On-Column Detection in Capillary Electrophoresis. HP Journal, 46, 20-24.

[3]   Agilent Technologies (1997) Agilent Technologies Technical Note. 5965-5984.

[4]   Bruno, A.E., Gassmann, E., Pericles, N. and Anton, K. (1989) On-Column Capillary Flow Cell Utilizing Optical Waveguide for Chromatographic Applications. Analytical Chemistry, 61, 876-883.

[5]   Verpoorte, E., Manz, A., Luedi, H., Widmer, H.M., van der Schoot, B.H. and de Rooij, N.F. (1991) A Novel Optical Detector Cell for Use in Miniaturized Total Chemical Analysis Systems. Proceedings of the International Conference on Solid-State Sensors and Actuators, San Francisco, 24-27 June 1991, 796-799.

[6]   Verpoorte, E., Manz, A., Luedi, H., Bruno, A.E., Maystre, F., Krattiger, B., Widmer, H.M., van der Schoot, B.H. and de Rooij, N.F. (1992) A Silicon Flow Cell for Optical Detection in Miniaturized Total Chemical Analysis Systems. Sensors and Actuators B Chemical, 6, 66-70.
http://dx.doi.org/10.1016/0925-4005(92)80032-S

[7]   Moring, S.E., Reel, R.T. and van Soest, R.E.J. (1992) Optical Improvements of a Z Shaped Cell for High-Sensitivity UV Absorbance Detection in Capillary Electrophoresis. Analytical Chemistry, 65, 3454-3459.
http://dx.doi.org/10.1021/ac00071a020

[8]   Tiefenthaler, K. and Lukosz, W. (1984) Integrated Optical Switches and Gas Sensors. Optics Letters, 9, 137-139.
http://dx.doi.org/10.1364/OL.9.000137

[9]   Mossman, M.A. and Whitehead, L.A. (2005) Controlled Frustration of Total Internal Reflection by Electrophoresis of Pigment Particles. Applied Optics, 44, 1601-1609.
http://dx.doi.org/10.1364/AO.44.001601

[10]   Yeh, P., Yariv, A. and Hong, C.S. (1977) Electromagnetic Propagation in Periodic Stratified Media. I. General Theory. Journal of the Optical Society of America, 67, 423-438.
http://dx.doi.org/10.1364/JOSA.67.000423

[11]   Yariv, A. and Yeh, P. (1977) Electromagnetic Propagation in Periodic Stratified Media. II. Birefringence, Phase Matching, and X-Ray Lasers. Journal of the Optical Society of America, 67, 438-448.
http://dx.doi.org/10.1364/JOSA.67.000438

[12]   Kokubun, Y., Baba, T., Sakaki, T. and Iga, K. (1986) Low-Loss Antiresonant Reflecting Optical Waveguide on Si Substrate in Visible-Wavelength Region. Electronics Letters, 22, 892-893.
http://dx.doi.org/10.1049/el:19860608

[13]   Zourob, M., Simonian, A., Wild, J., Mohr, S., Fan, X., Abdulhalime, I. and Goddarda, N.J. (2007) Optical Leaky Waveguide Biosensors for the Detection of Organophosphorus Pesticides. The Analyst, 132, 114-120.
http://dx.doi.org/10.1039/b612871h

[14]   Delonge, T. and Fouckhardt, H. (1995) Integrated Optical Detection Cell Based on Bragg-Reflecting Waveguides. Journal of Chromatography A, 716, 135-139.
http://dx.doi.org/10.1016/0021-9673(95)00611-P

[15]   Fouckhardt, H. and Delonge, T. (1996) Optical Detector Including Bragg Waveguide Structure. US Patent Nr. 5572328.

[16]   Fouckhardt, H. and Delonge, T. (1997) An Optical Detector Device. European Patent Nr. EP 0 679 881 B1.

[17]   Fouckhardt, H., Grosse, A., Grewe, M. and Kuhnke, M. (2001) Micro Flow Modules with Combined Fluid Flow Channel and Optical Detection Waveguide—Hyper Rayleigh Scattering as a Case Study. Fresenius Journal of Analytical Chemistry, 371, 218-227.
http://dx.doi.org/10.1007/s002160100963

[18]   Stadler, S., Braeuchle, C., Brandl, S. and Gompper, R. (1996) Experimental Determination of the First Hyperpolarizability of New Chiral and Achiral Octupolar Tertiary Amines by Hyper-Rayleigh Scattering. Chemistry of Materials, 8, 414-417.
http://dx.doi.org/10.1021/cm9503487

[19]   Stadler, S., Braeuchle, C., Brandl, S. and Gompper, R. (1996) Determination of the First Hyperpolarizabilities of Octupolar Molecular Ions Made from Symmetric Cyanine Dyes. Chemistry of Materials, 8, 676-678.
http://dx.doi.org/10.1021/cm950453g

[20]   Steingötter, I. and Fouckhardt, H. (2005) Deep Fused Silica Wet Etching Using an Au-Free and Stress Reduced Sputter Deposited Cr Hard Mask. Journal of Micromechanics and Microengeering, 15, 2130-2135.
http://dx.doi.org/10.1088/0960-1317/15/11/019

[21]   Kimmle, C., Wolff, S., Doering, C. and Fouckhardt, H. (2013) Dependence of Fused-Silica Etch Rate on the Etch Mask Opening Diameter. Microelectronic Engineering, 112, 10-13.
http://dx.doi.org/10.1016/j.mee.2013.05.006

[22]   Grosse, A., Grewe, M. and Fouckhardt, H. (2001) Deep Wet Etching of Fused Silica Glass for Hollow Capillary Optical Leaky Waveguides in Microfluidic Devices. Journal of Micromechanics and Microengeering, 11, 257-262.
http://dx.doi.org/10.1088/0960-1317/11/3/315

 
 
Top