IJAA  Vol.4 No.1 , March 2014
Simulation of Atmospheric Wave-Fronts with Turbulence Intermittency
Abstract: A new extendable method for the simulation of atmospheric wave-fronts with turbulence intermittency is reported. The purpose is to generate simulations consistent with the distributions observed for the turbulence parameters and the seeing, not available with standard methods. The intermittency is included by entering log-normal distributed arrays for the Fried parameter and the spatial coherence outer scale length into an extended form of the phase spectrum. The method is tested on large samples of simulated long-exposure point-source images. The tests show the agreement of the simulations with literature data. The simulations show that the intermittency affects negligibly the long-term median image size but breaks the symmetry of the wave-front phase spectrum, scatters the phase structure function and changes the image profile.
Cite this paper: Sedmak, G. (2014) Simulation of Atmospheric Wave-Fronts with Turbulence Intermittency. International Journal of Astronomy and Astrophysics, 4, 155-164. doi: 10.4236/ijaa.2014.41014.

[1]   Ala, R., Vernin, J. and Masciadri, E. (1997) Whole Atmospheric-Turbulence Profiling with Generalized Scidar. Applied Optics, 36, 7898-7905.

[2]   Quirrenbach, A. (2002) Site Testing and Site Monitoring for Extremely Large Telescopes. Astronomical Site Evaluation in the Visible and Radio Range, ASP Conference Series, 266, 516-522.

[3]   Osborn, J., Wilson, R., Butterley, T, Shepherd, H. and Sarazin, M. (2010) Profiling the Surface Layer of Optical Turbulence with Slodar. Monthly Notices of the Royal Astronomical Society, 406, 1405-1408.

[4]   Egner, S.E. and Masciadri, E. (2007) A G-SCIDAR for Ground-Layer Turbulence Measurements at High Vertical Resolution. Publications of the Astronomical Society of the Pacific, 119, 1441-1448.

[5]   Masciadri, E., Avila, R. and Sánchez, L.J. (2002) First Evidence of the Finite Horizontal Extent of the Optical Turbulence Layers. Implications for New Adaptive Optics Techniques. Astronomy & Astrophysics, 382, 378-388.

[6]   Kolmogorov, A.N. (1941) Dissipation of Energy in Locally Isotropic Turbulence. Doklady Akademii Nauk SSSR, 32, 16-18.

[7]   Toselli, I., Agrawal, B. and Restaino, S. (2011) Light Propagation through Anisotropic Turbulence. Journal of the Optical Society of America, 28, 483-488.

[8]   Sarazin, M. and Roddier, F. (1990) The ESO Differential Image Motion Monitor. Astronomy & Astrophysics, 227, 294-300.

[9]   Wilson, R.W., O’Mahony, Packhan, N.C. and Azzaro, M. (1999) The Seeing at the William Herschel Telescope. Monthly Notices of the Royal Astronomical Society, 309, 379-387.

[10]   Von Karman, T. (1948) Progress in the Statistical Theory of Turbulence. Proceedings of the National Academy of Sciences USA, 34, 530-539.

[11]   Ochs, G.R. and Hill, R.J. (1985) Optical-Scintillation Method of Measuring Turbulence Inner Scale. Applied Optics, 24, 2430-2432.

[12]   Ziad, A., Sch?ck, M., Conan, G.A., Troy, M., Dekany, R., Lane, B.F., Borgnino, J. and Martin, F. (2004) Comparison of Measurements of the Outer Scale of Turbulence by Three Different Techniques. Applied Optics, 43, 2316-2324.

[13]   Abahamid, A., Vernin, J., Benkhaldoun, Z., Jabiri, A., Azouit, M. and Agabi, A. (2004) Seeing, Outer Scale of Optical Turbulence, and Coherence Outer Scale at Different Astronomical Sites Using Instruments on Meteorological Balloons. Astronomy & Astrophysics, 422, 1123-1127.

[14]   Martin, F., Tokovinin, A., Ziad, A., Conan, R., Borgnino, J., Avila, R., Agabi, A. and Sarazin, M. (1998) First Statistical Data on Wave Front Outer Scale at La Silla Observatory from the GSM Instrument. Astronomy & Astrophysics, 336, L49-L52.

[15]   Martin, F., Conan, R., Tokovinin, A., Ziad, A., Trinquet, H., Borgnino, J., Agabi, A. and Sarazin, M. (2000) Optical Parameters Relevant for High Angular Resolution at Paranal from GSM Instrument and Surface Layer Contribution. Astronomy and Astrophysics Supplement Series, 144, 39-44.

[16]   Racine, R. (1996) Temporal Fluctuations of Atmospheric Seeing. Publications of the Astronomical Society of the Pacific, 108, 372-374.

[17]   Vernin J. and Muňoz-Tuňón, C. (1998) The Temporal Behaviour of Seeing. New Astronomy Review, 42, 451-454.

[18]   Tokovinin, A., Baumont, S. and Vasquez, J. (2003) Statistics of turbulence profile at Cerro Tololo. Monthly Notices of the Royal Astronomical Society, 340, 52-58.

[19]   Law, N.M., Mackay, C.D. and Baldwin, J.E. (2006) Lucky Imaging: High Angular Resolution Imaging in the Visible from the Ground,” Astronomy & Astrophysics, 446, 739-745. 0004-6361:20053695

[20]   Short, N., Fitelson, W. and Townes, C.H. (2003) Atmospheric Turbulence Measurements at Mount Wilson Observatory. The Astrophysical Journal, 599, 1469-1477.

[21]   de Vries, W.H., Olivier, S.S., Asztalos, S.J., Rosenberg, L.J. and Baker, K.L. (2007) Image Ellipticity from Atmospheric Aberrations. The Astrophysical Journal, 662, 744-749. 517873

[22]   Heymans, C., Rowe, B., Hoekstra, H., Miller, L., Erben, T., Kitching, T. and Van Waerbeke, L. (2012) The Impact of High Spatial Frequency Atmospheric Distortions on Weak Lensing Measurements. Monthly Notices of the Royal Astronomical Society, 421, 381-389.

[23]   Taylor, G.I. (1938) The Spectrum of Turbulence. Proceedings of the Royal Society of London, A164, 476-490.

[24]   Zaman, K.B.M.Q. and Hussain, A.K.M.F. (1981) Taylor Hypothesis and Large-Scale Coherent Structures. Journal of Fluid Mechanics, 112, 379-396.

[25]   Assémat, F., Wilson, R.W. and Gendron, E. (2006) Method for Simulating Infinitely Long and Non Stationary Phase Screens with Optimized Memory Storage. Optics Express, 14, 988-999.

[26]   Tubbs, R.N. (2006) The Effect of Temporal Fluctuations in r0 on High-Resolution Observations. Proceedings of SPIE 6272, Advances in Adaptive Optics II, 6272, 62722Y. 1117/12.671170

[27]   McGlamery, B.L. (1976) Computer Simulation Studies of Compensation of Turbulence Degraded Images. Proceedings of SPIE 74, Image Processing, 225, 225-233. 954724

[28]   Roddier, N. (1990) Atmospheric Wave Front Simulation Using Zernike Polynomials. Optical Engineering, 29, 1174-1180.

[29]   Welsh, B.M. (1997) A Fourier-Series-Based Atmospheric Phase Screen Generator for Simulating Nonisoplanatic Geometries and Temporal Evolution. Proceedings of SPIE 3125, Propagation and Imaging through the Atmosphere, 327, 327-338.

[30]   Sedmak, G. (2004) Implementation of Fast-Fourier-Transform-Based Simulations of Extra-Large Atmospheric Phase and Scintillation Screens. Applied Optics, 43, 4527-4538. 1364/AO.43.004527

[31]   Tofsted, D.H. (2000) Turbulence Simulation: Outer Scale Effects on the Refractive Index Spectrum. Technical Report ARL-TR-548, US Army Research Lab. NM 88002-5501.

[32]   Bracewell, R.N. (2000) The Fourier Transform and Its Applications. 3rd Edition, McGraw Hill Higher Education, New York.

[33]   Consortini, A. and Ronchi, L. (1972) Choice of the Model of Atmospheric Turbulence. Applied Optics, 11, 1205-1211.

[34]   Tokovinin, A. (2002) From Differential Image Motion to Seeing. Publications of the Astronomical Society of the Pacific, 114, 1156-1166.

[35]   Nightingale, N.S. and. Buscher, D.F. (1991) Interferometric Measurements at the La Palma Observatory. Monthly Notices of the Royal Astronomical Society, 251, 155-166.

[36]   Fried, D.L. (1966) Optical Resolution through a Randomly Inhomogeneous Medium for Very Long and Very Short Exposures. Journal of the Optical Society of America A, 56, 1372-1379.

[37]   Roddier, F. (1981) The Effects of Atmospheric Turbulence in Optical Astronomy. In: Wolf, E. Ed., Progress in Optics, North-Holland, Amsterdam, 281-376.

[38]   Hinze, J.O. (1987) Turbulence. McGraw-Hill, New York.

[39]   Kaimal, J.C. and Finnegan, J.J. (1994) Atmospheric Boundary Layer Flows. Oxford University Press, New York.

[40]   Coulman, C.E., Vernin, J. and Fuchs, A. (1995) Optical Seeing: Mechanism of Formation of Thin Turbulent Laminae in the Atmosphere. Applied Optics, 34, 5461-5474. AO.34.005461

[41]   Dewan, E.M. and Grossbard, N. (2007) The Inertial Range “Outer Scale” and Optical Turbulence. Environmental Fluid Mechanics, 7, 383-396.

[42]   Ziad, A., Borgnino, J., Martin, F., Maire, J. and Mourard, D. (2004) Towards the Monitoring of Atmospheric Turbulence Model. Astronomy & Astrophysics, 414, L33-L36. 0004-6361:20031770

[43]   Ellerbroek, B.L. (2002) Efficient Computation of Minimum-Variance Wave-Front Reconstructors with Sparse Matrix Techniques. Journal of the Optical Society of America, 19, 1803-1815.

[44]   Glindemann, A., Lane, R.G. and Dainty, J.C. (1993) Simulation of Time-Evolving Speckle Patterns Using Kolmogorov Statistics. Journal of Modern Optics, 40, 2381-2388. 00349314552401

[45]   Lopez, B. and Sarazin, M. (1993) The ESO Atmospheric Temporal Coherence Monitor Dedicated to High Angular Resolution Imaging. Astronomy & Astrophysics, 276, 320-326.

[46]   Martinez, P., Kolb, J., Sarazin, M. and Tokovinin, A. (2010) On the Difference between Seeing and Image Quality: When the Turbulence Outer Scale Enters the Game. The Messenger, 141, 5-8.