Causal Groupoid Symmetries

Show more

References

[1] Pissanetzky, S. (2011) Emergence and Self-Organization in Partially Ordered Sets. Complexity, 17, 19-38.

http://onlinelibrary.wiley.com/doi/10.1002/cplx.20389/abstract

http://dx.doi.org/10.1002/cplx.20389

[2] Pissanetzky, S. (2012) Reasoning with Computer Code: A New Mathematical Logic. Journal of Artificial General Intelligence, 3, 11-42. http://www.degruyter.com/view/j/jagi.2012.3.issue-3/issue-files/jagi.2012.3.issue-3.xml

[3] Pissanetzky, S. (2011) Structural Emergence in Partially Ordered Sets Is the Key to Intelligence. Lecture Notes in Computer Science. Artificial General Intelligence, 6830, 92-101.

http://dl.acm.org/citation.cfm?id=2032884

[4] Weinstein, A. (1996) Groupoids: Unifying Internal and External Symmetry. Notices of the AMS, 43, 744-752.

http://www.ams.org/notices/199607/weinstein.pdf

[5] Stewart, I., Golubitsky, M. and Pivato, M. (2003) Symmetry Groupoids and Patterns of Synchrony in Coupled Cell Networks. SIAM Journal of Applied Dynamical Systems, 2, 609-646.

http://epubs.siam.org/doi/abs/10.1137/S1111111103419896

http://dx.doi.org/10.1137/S1111111103419896

[6] Golubitsky, M. and Stewart, I. (2006) Nonlinear Dynamics of Networks: The Groupoid Formalism. Bulletin of the American Mathematical Society, 43, 305-364. http://www.ams.org/journals/bull/2006-43-03/S0273-0979-06-01108-6/

http://dx.doi.org/10.1090/S0273-0979-06-01108-6

[7] Wissner-Gross, A.D. and Freer, C.E. (2013) Causal Entropic Forces. Physical Review Letters, 110, 168702.

http://link.aps.org/doi/10.1103/PhysRevLett.110.168702

http://dx.doi.org/10.1103/PhysRevLett.110.168702

[8] Gardner, A. and Conlon, J.P. (2013) Cosmological Natural Selection and the Purpose of the Universe. Complexity, 18, 48-56. http://onlinelibrary.wiley.com/doi/10.1002/cplx.21446/abstract

http://dx.doi.org/10.1002/cplx.21446

[9] Eigen, M. (2013) From Strange Simplicity to Complex Familiarity. Oxford University Press, New York.

http://dx.doi.org/10.1093/acprof:oso/9780198570219.001.0001

[10] Fuster, J.M. (2005) Cortex and Mind. Unifying Cognition. Oxford University Press, New York.

http://dx.doi.org/10.1093/acprof:oso/9780195300840.001.0001

[11] Cuntz, H., Mathy, A. and Hausser, M. (2012) A Scaling Law Derived from Optimal Dendritic Wiring. Proceedings of the National Academy of Sciences USA, 109, 11014.

http://www.pnas.org/content/early/2012/06/19/1200430109.full.pdf

http://dx.doi.org/10.1073/pnas.1200430109

[12] Verlinde, E. (2011) On the Origin of Gravity and the Laws of Newton. Journal of High Energy Physics, 4, 1-26.

http://arxiv.org/pdf/1001.0785.pdf

[13] Pissanetzky, S. (2009) A New Universal Model of Computation and Its Contribution to Learning, Intelligence, Parallelism, Ontologies, Refactoring, and the Sharing of Resources. International Journal of Information and Mathematical Sciences, 5, 952-982.

http://www.scicontrols.com/Publications/ANewUniversalModel.pdf

[14] Bolognesi, T. (2010) Causal Sets from Simple Models of Computation. arXiv:1004.3128.

http://arxiv.org/abs/1004.3128

[15] Carlson, C.R. (2010) Causal Set Theory and the Origin of Mass-Ratio. viXra:1006.0070.

http://vixra.org/abs/1006.0070

[16] Pissanetzky, S. and Lanzalaco, F. (2013) Black-Box Brain Experiments, Causal Mathematical Logic, and the Thermodynamics of Intelligence. Koene, R., Sandberg, A. and Deca, D., Eds., Journal of Artificial General Intelligence, Special Issue on Brain Emulation and Connectomics, to be published.

[17] Mason, J.W.D. (2013) Consciousness and the Structuring Property of Typical Data. Complexity, 18, 28-37.

http://onlinelibrary.wiley.com/doi/10.1002/cplx.21431/full

http://dx.doi.org/10.1002/cplx.21431

[18] Pearl, J. (2009) Causality. Models, Reasoning, and Inference. 2nd Edition, Cambridge University Press, New York.

http://dx.doi.org/10.1017/CBO9780511803161

[19] Neural Information Processing Foundation (2013) http://nips.cc/Conferences/2013/

[20] Stephan, K.E., Penny, W.D., Moran, R.J., den Ouden, H.E., Daunizeau, J. and Friston, K.J. (2010) Ten Simple Rules for Dynamic Causal Modeling. Neuroimage, 49, 3099-3109.

http://www.ncbi.nlm.nih.gov/pubmed/19914382

http://dx.doi.org/10.1016/j.neuroimage.2009.11.015

[21] Kawamata, M., Kirino, E., Inoue, R. and Arai, H. (2007) Event-Related Desynchronization of Frontal-Midline Theta Rhythm during Preconscious Auditory Oddball Processing. Clinical EEG and Neuroscience, 38, 193.

http://www.ncbi.nlm.nih.gov/pubmed/17993201

http://dx.doi.org/10.1177/155005940703800403