IJAA  Vol.4 No.1 , March 2014
Dust-Acoustic Solitary Waves in an Unmagnetized Dusty Plasma with Arbitrarily Charged Dust Fluid and Trapped Ion Distribution
ABSTRACT

The nonlinear propagation of dust-acoustic (DA) solitary waves in three-component unmagnetized dusty plasma consisting of Maxwellian electrons, vortex-like (trapped) ions, and arbitrarily charged cold mobile dust grain has been investigated. It has been found that, owing to the departure from the Maxwellian ions distribution to a vortex-like one, the dynamics of small but finite amplitude DA waves is governed by a nonlinear equation of modified Korteweg-de Vries (mK-dV) type instead of K-dV. The reductive perturbation method has been employed to study the basic features (phase speed, amplitude, width, etc.) of DA solitary waves which are significantly modified by the presence of trapped ions. The implications of our results in space and laboratory plasmas are briefly discussed.


Cite this paper
Rahman, O. , Bhuyan, M. , Haider, M. and Islam, J. (2014) Dust-Acoustic Solitary Waves in an Unmagnetized Dusty Plasma with Arbitrarily Charged Dust Fluid and Trapped Ion Distribution. International Journal of Astronomy and Astrophysics, 4, 119-127. doi: 10.4236/ijaa.2014.41011.
References
[1]   Roberts, K.V. and Berk, H.L. (1967) Nonlinear Evolution of a Two-Stream Instabilit. Physical Review Letters, 19, 297-300. http://dx.doi.org/10.1103/PhysRevLett.19.297

[2]   Morse, R.L. and Nielson, C.W. (1969) One-, Two-, and Three-Dimensional Numerical Simulation of Two-Beam Plasmas. Physical Review Letters, 23, 1087-1090. http://dx.doi.org/10.1103/PhysRevLett. 23.1087

[3]   Sakanaka, P.K. (1972) Beam-Generated Collisionless Ion—Acoustic Shocks. Physics of Fluids, 15, 1323. http://dx.doi.org/10.1063/1.1694084

[4]   Saeki, K., et al. (1979) Formation and Coalescence of Electron Solitary Holes. Physical Review Letters, 42, 501-504. http://dx.doi.org/10.1103/PhysRevLett.42.501

[5]   Lynov, J.P., et al. (1979) Observations of Solitary Structures in a Magnetized, Plasma Loaded Waveguide. Physica Scripta, 20, 328. http://dx.doi.org/10.1088/0031-8949/20/3-4/005

[6]   Schamel, H. (972) Stationary Solitary, Snoidal and Sinusoidal Ion Acoustic Waves. Physics of Plasmas, 14, 905. http://dx.doi.org/10.1088/0032-1028/14/10/002

[7]   Schamel, H. (1973) A Modified Korteweg-de Vries Equation for Ion Acoustic Waves Due to Resonant Electrons. Journal of Plasma Physics, 9, 377. http://dx.doi.org/10.1017/S002237780000756X

[8]   Schamel, H. (1975) Analytic BGK Modes and Their Modulational Instability. Journal of Plasma Physics, 13, 139. http://dx.doi.org/10.1017/S0022377800025927

[9]   Schamel, H. and Bujarbarua, S. (1980) Solitary Plasma Hole via Ion-Vortex Distribution. Physics of Fluids, 23, 2498. http://dx.doi.org/10.1063/1.862951

[10]   Bujarbarua, S. and Schamel, H. (1981) Theory of Finite-Amplitude Electron and Ion Holes. Journal of Plasma Physics, 25, 515. http://dx.doi.org/10.1017/S0022377800026295

[11]   Mamun, A.A., Shukla, P.K. and Cairns, R.A. (1996) Effects of Vortex-Like and Non-Thermal Ion Distributions on Non-Linear Dust-Acoustic Waves. Physics of Plasmas, 3, 2610. http://dx.doi.org/10. 1063/1.871973

[12]   Rao, N.N., Shukla, P.K. and Yu, M.Y. (1990) Dust-Acoustic Waves in Dusty Plasmas. Planetary and Space Science, 38, 543-546. http://dx.doi.org/10.1016/0032-0633(90)90147-I

[13]   Barkan, A., Merlino, R.L. and D’Angelo, N. (1995) Laboratory Observation of the Dust-Acoustic Wave Mode. Physics of Plasmas, 2, 3563-3565. http://dx.doi.org/10.1063/1.871121

[14]   D’Angelo, N. (1995) Coulomb solids and low-frequency fluctuations in RF dusty plasmas. Journal of Physics D: Applied Physics, 28, 1009. http://dx.doi.org/10.1088/0022-3727/28/5/024

[15]   Thompson, C., Barkan, A. and Merlino, R.L. (1999) Video Imaging of Dust Acoustic Waves. IEEE Transactions on Plasma Science, 27, 146-147. http://dx.doi.org/10.1109/27.763096

[16]   Rao, N.N. and Shukla, P.K. (1994) Nonlinear Dust-Acoustic Waves with Dust Charge Fluctuations. Planetary and Space Science, 42, 221-225. http://dx.doi.org/10.1016/0032-0633(94)90084-1

[17]   Melands, F. and Shukla, P.K. (1995) Theory of Dust-Acoustic Shocks. Planetary and Space Science, 43, 635-648. http://dx.doi.org/10.1016/0032-0633(94)00200-B

[18]   Mamun, A.A. (1999) Arbitrary Amplitude Dust-Acoustic Solitary Structures in a Three Component Dusty Plasma. Astrophysics and Space Science, 268, 443.

[19]   Shukla, P.K. and Mamun, A.A. (2003) Solitons, Shock and Vortices in Dusty Plasmas. New Journal of Physics, 5, 17. http://dx.doi.org/10.1088/1367-2630/5/1/317

[20]   Shukla, P.K. and Mamun, A.A. (2002) Introduction to Dusty Plasma Physics. Institute of Physics Publishing Publishing, Ltd., Britol.

[21]   Ishihara, O. (1988) Physics of Dusty Plasmas. American Institute of Physics, New York.

[22]   Moslem, W. M. (2006) Dust-ion-acoustic solitons and shocks in dusty plasmas. Chaos, Solitons Fractals, 28, 994. http://dx.doi.org/10.1016/j.chaos.2005.08.150

[23]   Mamun, A.A. Shukla, P.K. and Cairns, R.A. (1996) Solitary Potentials in Dusty Plasmas. Physics of Plasmas, 3, 702. http://dx.doi.org/10.1063/1.871905

[24]   Annou K. and Annou, R. (2012) Effect of Nonthermal Ion Distribution and Dust Temperature on Nonlinear Dust-Acoustic Solitary Waves. Pramana-Journal of Physics, 78, 121. http://dx.doi.org/10. 1007/s12043-011-0203-3

[25]   Rahman, O. and Mamun, A.A. (2013) Nonlinear Propagation of Dust-Acoustic Solitary Waves in a Dusty Plasma with Arbitrarily Charged Dust and Tapped Electrons. Pramana-Journal of Physics, 80, 1031. http://dx.doi.org/10.1007/s12043-013-0535-2

[26]   Washimi, H. and Taniuti, T. (1966) Propagation of Ion-Acoustic Solitary Waves of Small Amplitude. Physical Review Letters, 17, 996-998. http://dx.doi.org/10.1103/PhysRevLett.17.996

 
 
Top