IJAA  Vol.4 No.1 , March 2014
Optical to Mid-Infrared Analysis for the Galaxy Group RSCG 44
ABSTRACT

We present the detailed Optical to Mid Infrared (MIR) analysis on the compact group of galaxies RSCG44. The optical analysis comprehends both photometric andspectroscopic studies for six galaxies in this group. The overall Optical to MIR data provide maps, spectra, profiles and images to analyse galaxy properties (structure, line-strength features, etc.) of each member searching for signatures of star formation and nucleus activity. In the photometric analysis, we study $BVR$ surface brightness and colors calculated for regions such as galaxy centers, possible bridges, tails and optical knots. Optical direct image also presents residual images (after subtracting isophotal models) and unsharp masked images in order to uncover any hidden structure in the system. The inclusion of maps, profiles and images from the Spitzer Space Telescope (SST) was made in order to provide a complementary outlook for the optical colors and the environment in which the group evolves, hence, a better explanation of the photospheric component and possible photdissociation regimes in polycyclic aromatic hydrocarbon (PAH) emission at 5.8 and 8 μm have provide a disentangled view of dust properties in the interstellar medium (ISM) at MIR. Optical spectra for the group are also provided to establish a more fond comparison between optical to mid infrared properties. The color gradients were compared with the optical spectra of both galaxies, showing in general similar trends for star formation. Globally, color maps, color tables and optical spectra indicate predominant stellar populations from classes I, III and V corresponding to spectral types of K-M stars with ages of at least in theorder of 10 Gyr for models using metallicity ranges with solar and non solar abundances. These results lead us to the conclusion of a moderate star formation rate and a tranquil evolving state of the system.


Cite this paper
Pérez-Grana, J. , Kemp, S. and Phillips, J. (2014) Optical to Mid-Infrared Analysis for the Galaxy Group RSCG 44. International Journal of Astronomy and Astrophysics, 4, 54-69. doi: 10.4236/ijaa.2014.41007.
References
[1]   Schlegel, D., Petre, R. and Loewenstein, M. (1998) ROSAT observations of X-ray-faint S0 galaxies—NGC 1380. Astronomical Journal, 115, 525-534.

[2]   Tanvuia, L. and Pompei, E. (2004) Star Formation Activity and Nuclear Activity in Compact Groups of Galaxies. ENS, 325, 53.

[3]   Mihos, J.C. (1999) Gasdynamics and Starbursts in Interacting Galaxies. IAUS, 186, 205.

[4]   Moles, M., del Olmo, A., Perea, J., Masegosa, J., Marquez, I. and Costa, V. (1994) Star Formation and Merging in Compact Groups of Galaxies. Astronomy & Astrophysics, 285, 404.

[5]   Schweizer, F. (1996) Colliding and Merging Galaxies. III. The Dynamically Young Merger Remnant NGC 3921. Astronomical Journal, 111, 195.

[6]   Iglesias-Paramo, J., Boselli, A., Gavazzi, G., Cortese, L. and Vilches, J. (2003) The R-Band Luminosity of Abell 1367: A Comparision with Coma. Astronomy & Astrophysics, 406, 25.

[7]   Grutzbauch, R., Annibali, F., Bressan, A., Focardi, P., Kelm, B., Rampazzo, R. and Zeilinger, W. (2005) Optical Properties of the NGC 5328 Group of Galaxies. Astronomical Journal, 129, 1832.

[8]   Verdes-Montenegro, L., Del Olmo, A., Yuin, M. and Perea, J. (2003) The evolution of HCG 31. Optical and High Resolution HI Study. Astronomy & Astrophysics, 430, 443.

[9]   Severgnini, P. and Saracco, P. (2001) H Luminosity and Star Formation of Galaxies in Hickson Compact Groups. Astrophysics and Space Science, 276, 749.

[10]   O’Halloran, B., Metcalfe, L., McBreen, B., Laureijs, R., Leech, K., Delaney, M., Watson, D. and Hanlon, L. (2002) Infrared Space Observatory Observations of Hickson Compact Group 31 with the Central Wolf-Rayet Galaxy NGC 1741. The Astrophysical Journal, 575, 747. http://dx.doi.org/10.1086/341333

[11]   Cortese, L., Gavazzi, G., Boselli, A., Franzetti, P., Kennicutt, R.C., O’Neil, K. and Sakai, S. (2006) Witnessing Galaxy Preprocessing in the Local Universe: The Case of a Star-Bursting Group Falling into Abell 1367. Astronomy & Astrophysics, 456, 857.

[12]   Uchida, K.I., Sellgreen, K. and Wellner, M. (1998) Do the Infrared Emission Features Need Ultraviolet Excitation? The Astrophysical Journal, 493, 109. http://dx.doi.org/10.1086/311136

[13]   Giovanelli, R.G. and Haynes, J. (1985) Gas Deficiency in Cluster Galaxies—A Comparison of Nine Clusters. The Astrophysical Journal, 292, 404. http://dx.doi.org/10.1086/163170

[14]   Barton, M. (1998) Model Atmospheres Broadband Colors, Bolometric Correction and Temperature calibrations for O-M stars. Astronomy & Astrophysics, 333, 231.

[15]   Godwin, J.V. and Peach, J.V. (1982) Photometry of the Cluster of Galaxies A 1367. Monthly Notices of the Royal Astronomical Society, 200, 733.

[16]   Ramella, M., Pissani, A. and Geller, M. (1997) Groups of Galaxies in the Northern CfA Redshift Survey. The Astronomical Journal, 113, 483.

[17]   Geller, M.J. and Hucra, J.P. (1989) The Center for Astrophysics Redshift Survey—Recent Results. Science, 246, 897-903. http://dx.doi.org/10.1126/science.246.4932.897

[18]   Ramella, M., Geller, M., Pissani, A. and De la Costa, R. (2002) The UZC-SSRS2 Group Catalog. The Astronomical Journal, 123, 2976-2984.

[19]   Walker, L.M., Fabian, A.C., Sanders, J.S. and George, M.R. (2012) Galaxy Cluster Outskirts: A Universal Entropy Profile for Relaxed Clusters? The Astrophysical Journal, 143, 69.

[20]   Adelman-McCarthy, J., Agüeros, M.A., Allam, S., et al. (2008) The Sixth Data Release of the Sloan Digital Sky Survey. The Astrophysical Journal Supplement Series, 175, 297-313.

[21]   Pérez Grana, J.A., Kemp, S.N., Katsiyannis, A.C., Franco-Balderas, A., de La Fuente, E., Meaburn, J. and Khosroshahi, H.G. (2008) BVRI Photometric Analysis for the Galaxy Group NGC 4410. Astronomy & Astrophysics, 485, 435-449.

[22]   Poggianti, B. (1997) K and Evolutionary Correction UV to IR. Astronomy & Astrophysics, 122, 399-407.

[23]   Worthey, G. (1994) Comprehensive Stellar Population Models and the Disentanglement of Age and Metallicity Effects. The Astrophysical Journal Supplement Series, 95, 107-149.
http://dx.doi.org/10.1086/192096

[24]   Rampazzo, R., Annibali, F., Bressan, A., Longhetti, M., Padoan, F. and Zeilinger, W.W. (2005) Nearby Early-Type Galaxies with Ionized Gas. I. Line-Strength Indices of the Underlying Stellar Population. Astronomy & Astrophysics, 433, 455-497.

[25]   Jerjen, H., Binggeli, B. and Freeman, K. (2000) Surface BR Photometry of Newly Discovered Dwarf Elliptical Galaxies in the Nearby Sculptor and Centaurus A Group. The Astronomical Journal, 119, 593-608.

[26]   Martinez, M., Del Olmo, A., Perea, J., Coziol, R. and Focardi, P. (2010) The influence of local environment on the emergence of AGN activity in Galaxies. Proceedings of the 9th Scientific Meeting of the Spanish Astronomical Society, 13-17 September 2010, Madrid, 252-258.

[27]   Riffato, A., Long, G. and Capicciolli, M. (1995) The UV porpierties of normal Galaxies III. Standar Luminosity Profiles and Total Magnitudes. Astronomy & Astrophysics, 114, 527-536.

[28]   Lu, N., Helou, G., Werner, M., Dinerstein, H.L., Dale, D., Silbermann, N., Malhotra, S., Beichman, C. and Jarrett, T. (2003) Infrared Emission of Normal Galaxies from 2.5 to 12 Micron: Infrared Space Observatory. Astrophysical Journal, 588, 199-217.

[29]   Sulentic, J.W., Rosado, M., Verdes-Montenegro, L., Trinchieri, G., Xu, C. and Piescht, W. (2001) A Multiwavelength Study of Stephan’s Quintet. The Astronomical Journal, 122, 2993-3016.

[30]   Marcum, P.M., Aars, C.E. and Fanelli, M. (2004) Early-Type Galaxies in Extremely Isolated Environments: Typical Ellipticals? The Astronomical Journal, 127, 3213-3234.

[31]   Bressan, A., Chiosi, C. and Fagotto, F. (1994) Spectrophotometric Evolution of Elliptical Galaxies. 1: Ultraviolet Excess and Color-Magnitude-Redshift Relations. Astrophysical Journal, 94, 63.
http://dx.doi.org/10.1086/192073

[32]   de la Rosa, I.G., de Carvalho, R.R., Vazdekis, A. and Barbuy, B. (2007) Truncated Star Formation in Compact Groups of Galaxies: A Stellar Population Study. Astronomical Journal, 133, 330.

[33]   Mendes de Oliveira, C., Coelho, P., González, J. J. and Barbuy, B. (2005) Ages, Metallicities, and Element Enhancement for Galaxies in Hickson Compact Groups. Astronomical Journal, 130, 55-64.

[34]   Boselli Lequeux, J., Sauvage, M., Boulade, O., Boulanger, F., Cesarsky, D., Dupraz, C., Madden, S., Viallefond, F. and Vigroux, L., (2001) 1.65 Micron (H Band) Surface Photometry of Galaxies. VI. The History of Star Formation in Normal Late-Type Galaxies. Astrophysical Journal, 94, 63-115.

[35]   Gavazzi, G., Mellier, Y., Fort, B., Cuillandre, J.-C. and Dantel-Fort, M. (2004) Mass and Light in the Supercluster of Galaxies MS0302+17. Astronomy & Astrophysics, 417, 499.

[36]   Sharina, M.E., Karachentsev, I., Dolphin, A., Karachentseya, V., Tully, R., Karataeva, G., Makarov, D.I., Makarova, L.N., Sakai, S., Shaya, E.J., Nikolaev, E.Y. and Kuznetsov, A.N. (2008) Photometric Properties of the Local Volume of Dwarf Galaxies. Monthly Notices of the Royal Astronomical Society, 384, 1544-1562.

[37]   Hunter, D.A. and Elmegreen, B.G. (2004) The Stellar Structure of Irregular Galaxies. Astrophysical Journal Supplement Series, 162, 49. http://dx.doi.org/10.1086/498096

[38]   Madden, S.C. (2000) Effects of Massive Star Formation on the ISM of Dwarf Galaxies. New Astronomy Reviews, 44, 249-256.

[39]   Sulentic, J. (2002) Compact Galaxy Groups in 3D. Astronomical Society of the Pacific (ASP), 282, 227.

[40]   Luo, Z., Shu, C. and Huang, J. (2007) The Differences of Star Formation History between Merging Galaxies and Field Galaxies in the Early Data Release of the SDSS. Publications of the Astronomical Society of Japan (PASJ), 59, 541.

[41]   Rubin, V.C., Hunter, D.A. and Ford, W.K. (1991) Optical Properties and Dynamics of Galaxies in the Hickson Compact Groups. Astrophysical Journal Supplement Series, 76, 153-183.
http://dx.doi.org/10.1086/191567

 
 
Top