[1] Stokes, G.G. (1851) On the Effect of the Internal Friction of Fluids on the Motion of Pendulums. Transactions of the Cambridge Philosophical Society, Part II, 9, 8-106.
[2] Tanner, R.I. (1962) Note on the Rayleigh Problem for a Visco-Elastic Fluid. Zeitschrift für Angewandte Mathematik und Physik, 13, 573-580.
http://dx.doi.org/10.1007/BF01595580
[3] Soundalgekar, V.M. (1974) Stokes Problem for Elastico-Viscous Fluid. Rheologica Acta, 13, 177-179.
http://dx.doi.org/10.1007/BF01520872
[4] Teipel, I. (1981) The Impulsive Motion of a Flat Plate in a Viscoelastic Fluid. Acta Mechanica, 39, 277-279.
http://dx.doi.org/10.1007/BF01170349
[5] Puri, P. (1984) Impulsive Motion of a Flat Plate in a Rivlin-Ericksen Fluid. Rheologica Acta, 23, 451-453.
http://dx.doi.org/10.1007/BF01329198
[6] Erdogan, M.E. (1995) Plane Surface Suddenly Set in Motion in a Non-Newtonian Fluid. Acta Mechanica, 108, 179- 187.
http://dx.doi.org/10.1007/BF01177337
[7] Zeng, Y. and Weinbaum, S. (1995) Stokes Problems for Moving Half-Planes. Journal of Fluid Mechanics, 287, 59-74.
http://dx.doi.org/10.1017/S0022112095000851
[8] Tan, W.C. and Xu, M.Y. (2002) The Impulsive Motion of Flat Plate in a Generalized Second Grade Fluid. Mechanics Research Communications, 29, 3-9.
http://dx.doi.org/10.1016/S0093-6413(02)00223-9
[9] Tan, W.C. and Xu, M.Y. (2002) Plane Surface Suddenly Set in Motion in a Viscoelastic Fluid with Fractional Maxwell Model. Acta Mechanica Sinica, 18, 342-349.
http://dx.doi.org/10.1007/BF02487786
[10] Erdogan, M.E. (2002) On the Unsteady Unidirectional Flows Generated by Impulsive Motion of a Boundary or Sudden Application of a Pressure Gradient. International Journal of Non-Linear Mechanics, 37, 1091-1106.
http://dx.doi.org/10.1016/S0020-7462(01)00035-X
[11] Fetecau, C. and Fetecau, C. (2003) The First Problem of Stokes for an Oldroyd-B Fluid. International Journal of Non-Linear Mechanics, 38, 1539-1544.
http://dx.doi.org/10.1016/S0020-7462(02)00117-8
[12] Tan, W.C. and Masuoka, T. (2005) Stokes’ First Problem for an Oldroyd-B Fluid in a Porous Half Space. Physics of Fluids, 17, 023101.
http://dx.doi.org/10.1063/1.1850409
[13] Tan, W.C. and Masuoka, T. (2005) Stokes’ First Problem for a Second Grade Fluid in a Porous Half-Space with Heated Boundary. International Journal of Non-Linear Mechanics, 40, 515-522.
http://dx.doi.org/10.1016/j.ijnonlinmec.2004.07.016
[14] Zierep, J. and Fetecau, C. (2007) Energetic Balance for the Rayleigh-Stokes Problem of a Second Grade Fluid. International Journal of Engineering Science, 45, 155-162.
http://dx.doi.org/10.1016/j.ijengsci.2006.09.001
[15] Zierep, J., Bohning, R. and Fetecau, C. (2007) Rayleigh-Stokes Problem for Non-Newtonian Medium with Memory. Zeitschrift für Angewandte Mathematik und Mechanik, 87, 462-467.
http://dx.doi.org/10.1002/zamm.200710328
[16] Vieru, D., Nazar, M., Fetecau, C. and Fetecau, C. (2008) New Exact Solutions Corresponding to the First Problem of Stokes for Oldroyd-B Fluids. Computers & Mathematics with Applications, 55, 1644-1652.
http://dx.doi.org/10.1016/j.camwa.2007.04.040
[17] Shahzad, F., Hayat, T. and Ayub, M. (2008) Stokes’ First Problem for the Rotating Flow of a Third Grade Fluid. Nonlinear Analysis: Real World Applications, 9, 1794-1799.
http://dx.doi.org/10.1016/j.nonrwa.2007.05.008
[18] Hayat, T., Shahzad, F., Ayub, M. and Asghar, S. (2008) Stokes’ First Problem for a Third Grade Fluid in a Porous Half Space. Communications in Nonlinear Science and Numerical Simulation, 13, 1801-1807.
http://dx.doi.org/10.1016/j.cnsns.2007.04.015
[19] Fakhari, K., Zainal, A.A. and Kara, A.H. (2011) A Note on the Interplay between Symmetries, Reduction and Conservation Laws of Stokes’ First Problem for Third-Grade Rotating Fluids. Pramana Journal of Physics, 77, 439-445.
http://dx.doi.org/10.1007/s12043-011-0164-6
[20] Sajid, M., Ali, N., Javed T. and Abbas, Z. (2010) Stokes’ First Problem for a MHD Third Grade Fluid in a Porous Half Space. Journal of Porous Media, 1, 279-284.
[21] Sato, H. (1961) The Hall Effects in the Viscous Flow of Ionized Gas between Parallel Plates under Transverse Magnetic Field. Journal of the Physical Society of Japan, 16, 1427-1433.
http://dx.doi.org/10.1143/JPSJ.16.1427
[22] Cramer, K. and Pai, S. (1973) Magnetofluid Dynamics for Engineers and Applied Physicists. McGraw-Hill, New York.
[23] Ayub, M., Zaman, H. and Ahmad, M. (2010) Series Solution of Hydromagnetic Flow and Heat Transfer with Hall Effect in a Second Grade Fluid over a Stretching Sheet. Central European Journal of Physics, 8, 135-149.
http://dx.doi.org/10.2478/s11534-009-0110-0
[24] Ahmad, M., Zaman, H. and Rehman, N. (2010) Effects of Hall Current on Unsteady MHD Flows of a Second Grade Fluid. Central European Journal of Physics, 8, 422-431.
http://dx.doi.org/10.2478/s11534-009-0083-z
[25] Zaman, H. (2013) Hall Effects on the Unsteady Incompressible MHD Fluid Flow with Slip Conditions and Porous Walls. Applied Mathematics and Physics, 1, 31-38.
[26] Hayat, T., Zaman, H. and Ayub, M. (2010) Analytic Solution of Hydromagnetic Flow with Hall Effect over a Surface Stretching with a Power Law Velocity. Numerical Methods for Partial Differential Equations, 27, 937-959.
[27] Hayat, T., Naz, R. and Asghar, S. (2004) Hall Effects on Unsteady Duct Flow of a Non-Newtonian Fluid in a Porous Medium. Applied Mathematics and Computation, 157, 103-114.
http://dx.doi.org/10.1002/num.20562
[28] Hayat, T. and Nawaz, M. (2011) Hall and Ion-Slip Effects on Three-Dimensional Flow of a Second Grade Fluid. International Journal for Numerical Methods in Fluids, 66, 183-193.
http://dx.doi.org/10.1016/j.amc.2003.08.069
[29] Pop I. and Soundalgekar, V.M. (1974) Effects of Hall Current on Hydromagnetic Flow near a Porous Plate. Acta Mechanica, 20, 315-318.
http://dx.doi.org/10.1007/BF01175933
[30] Gupta, A.S. (1975) Hydromagnetic Flow Past a Porous Flate Plate with Hall Effects. Acta Mechanica, 22, 281-287.
http://dx.doi.org/10.1007/BF01170681
[31] Debnath, L., Ray, S.C. and Chatterjee, A.K. (1979) Effects of Hall Current on Unsteady Hydromagnetic Flow Past a Porous Plate in a Rotating Fluid System. Zeitschrift für Angewandte Mathematik und Mechanik, 59, 469-471.
http://dx.doi.org/10.1002/zamm.19790590910
[32] Katagiri, M. (1969) The Effect of Hall Currents on the Magnetohydrodynamic Boundary Layer Flow Past a Semi-Infinite Flate Plate. Journal of the Physical Society of Japan, 27, 1051-1059.
http://dx.doi.org/10.1143/JPSJ.27.1051
[33] Abo-Eldahab, E.M. and Elbarbary, M.E. (2001) Hall Current Effect on Magnetohydrodynamic Free Convection Flow Past a Semi-Infinite Vertical Plate with Mass Transfer. International Journal of Engineering Science, 39, 1641-1652.
http://dx.doi.org/10.1016/S0020-7225(01)00020-9
[34] Abo-Eldahab, E.M. and Salem, A.M. (2004) Hall Effects on MHD Free Convection Flow of a Non-Newtonian Power Law Fluid at a Stretching Surface. International Communications in Heat and Mass Transfer, 31, 343-354.
http://dx.doi.org/10.1016/j.icheatmasstransfer.2004.02.005
[35] Attia, H.A. (2006) Hall Effects on the Flow of a Dusty Bingham Fluid in a Circular Pipe. Turkish Journal of Engineering and Environmental Sciences, 30, 14-21.
[36] Attia, H.A. (1998) Hall Current Effects on the Velocity and Temperature Fields of an Unsteady Hartman Flow. Canadian Journal of Physics, 76, 739-746.
[37] Liao, S.J. (2003) Beyond Perturbation: Introduction to Homotopy Analysis Method. Chapman and Hall/CRC Press, Florida.
http://dx.doi.org/10.1201/9780203491164
[38] Liao, S.J. (1992) The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problem. Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai.
[39] Liao, S.J. (2012) Homotopy Analysis Method in Nonlinear Differential Equations. Springer-Verlag, Berlin.
http://dx.doi.org/10.1007/978-3-642-25132-0
[40] Liao, S.J. (2013) Advances in the Homotopy Analysis Method. World Scientific Publishing Company, Singapore.
[41] Liao, S.J. (2009) Notes on the Homotopy Analysis Method: Some Definitions and Theorems. Communications in Non-linear Science and Numerical Simulation, 14, 983-997.
[42] Liao, S.J. (2006) An Analytic Solution of Unsteady Boundary-Layer Flows Caused by an Impulsively Stretching Plate. Communications in Nonlinear Science and Numerical Simulation, 11, 326-339.
[43] Ayub, M., Zaman, H., Sajid, M. and Hayat, T. (2008) Analytical Solution of Stagnation-Point Flow of a Viscoelastic Fluid towards a Stretching Surface. Communications in Nonlinear Science and Numerical Simulation, 13, 1822-1835.
http://dx.doi.org/10.1016/j.cnsns.2007.04.021
[44] Zaman, H. and Ayub, M. (2010) Series Solution of Unsteady Free Convection Flow with Mass Transfer along an Accelerated Vertical Porous Plate with Suction. Central European Journal of Physics, 8, 931-939.
http://dx.doi.org/10.2478/s11534-010-0007-y
[45] Zaman, H., Hayat, T., Ayub, M. and Gorla, R.S.R. (2011) Series Solution for Heat Transfer from a Continuous Surface in a Parallel Free Stream of Viscoelastic Fluid. Numerical Methods for Partial Differential Equations, 27, 1511-1524.
http://dx.doi.org/10.1002/num.20593
[46] Rivlin, R.S. and Ericksen, J.L. (1955) Stress Deformation Relations for Isotropic Materials. Journal of Rational Mechanics and Analysis, 4, 323-425.
[47] Sutton, G.W. and Sherman, A. (1965) Engineering Magnetohydrodynamics. McGraw-Hill, New York.