JBNB  Vol.2 No.2 , April 2011
Elaboration and characterization of alumina - fluorapatite composites
Alumina and fluorapatite powder were mixed in a wet medium in order to elaborate biphasic ceramics composites. The effect of fluorapatite addition (26.5 wt%) in the densification and the mechanical properties of the alumina matrix were measured. The phase developments have been systematically analysed by scanning electronic microscopy, X-ray diffraction, Infrared spectroscopy and 31P and 27Al magic angle scanning nuclear magnetic resonance. The Brazilian test was used to measure the mechanical resistance of alumina - 26.5 wt% fluorapatite composites. The densification and strength rupture of composites increase versus sintering temperature and holding time. At 1600°C, the composites densities reached 85% and the rupture strength was about 22 MPa. Also, the composites sintering at 1500°C for 5 hours provides samples with similar density and having higher mechanical resistance, above 26 MPa. For longer holding times, the mechanical properties were hindered by the exaggerated grain growth and the formation of intragranular porosity. From 1400°C, the characterization of the alumina - 26.5 wt% fluorapatite composites indicates the formation of calcium aluminates.

Cite this paper
nullA. Guidara, K. Chaari and J. Bouaziz, "Elaboration and characterization of alumina - fluorapatite composites," Journal of Biomaterials and Nanobiotechnology, Vol. 2 No. 2, 2011, pp. 103-113. doi: 10.4236/jbnb.2011.22014.
[1]   [1] L. L. Hench, “Bioceramics,” Journal of the American Ce-ramic Society, Vol. 81, No.7, 1998, pp. 1705-1728.

[2]   [2] A. Clifford and R. Hill, “Apatite-Mullite Glass-Ceramics,” Journal of Non-Crystalline Solids, Vol. 19, No. 6, 1996, pp. 346-351. doi:10.1016/0022-3093(95)00611-7

[3]   [3] L. L. Hench, “Bioceramics,” Journal of the American Cra- mic Society, Vol. 81, No. 7, 1998, pp. 1705-1728.

[4]   [4] S. M. Best, A. E. Porter, E. S. Thian and J. Huang, “Bioce-ramics: Past, Present and for the Future,” Journal of Euro-pean Ceramic Society, Vol. 28, 2008, pp. 1319-1327. doi:10.1016/j.jeurceramsoc.2007.12.001

[5]   [5] L. M. Rodriguez-Lorenzo, J. N. Hart and K. A. Gross, “In-fluence of Fluorine in the Synthesis of Apatites. Synthesis of Solid Solutions of Hydroxyl-Fluorapatite,” Biomaterials, Vol.24, 2003, pp. 3777-3785. doi:10.1016/S0142-9612(03)00259-X

[6]   [6] S. M. Barinova, L. I. Shvorneva, D. Ferro, I. V. Fadeeva and S. V. Tumano, “Solid Solution Formation at the Sintering of Hydroxyapatite-Fluorapatite Ceramics,” Science and Tech-nology of Advanced Materials, Vol. 5, 2004, pp. 537-541. doi:10.1016/j.stam.2004.02.012

[7]   [7] M. J. Larsen and A. Thorson, “A Comparaison of Some Effects of Fluoride on Apatite Formation in Vitro and in Vivo,” Calc. Tiss. Int., Vol. 36, No. 6, 1984, pp. 690-696. doi:10.1007/BF02405391

[8]   [8] L. Gineste, M. Gineste, X. Ranz, A. Ellefterion, A. Guilhem, N. Rouquet and P. Frayssinet, “Degradation of Hydroxylapa-tite, Fluorapatite and Fluorhydroxyapatite Coatings of Dental Implants in Dogs,” Journal of Biomedical Materials Re-search, Vol. 48, No. 3, 1999, pp. 224-234. doi:10.1002/(SICI)1097-4636(1999)48:3<224::AID-JBM5>3.0.CO;2-A

[9]   [9] B. H. Yoon, H. W. Kim, S. H. Lee, C. J. Bae, Y. H. Koh,Y. M. Kong and H. E. Kim, “Stability and Cellular Responses to Fluorapatite-Collagen Composites,” Biomaterials, Vol. 26, 2005, pp. 2957-2963. doi:10.1016/j.biomaterials.2004.07.062

[10]   [10] K. A. Gross and K. A. Bhadang, “Sintered Hydroxyfluorapa-tite. Part III: Sintering and Resultant Mechanical Properties of Sintered Blends of Hydroxyapatite and Fluorapatite,” Bio-materials, Vol. 25, 2004, pp. 1395-1405. doi:10.1016/j.biomaterials.2003.08.051

[11]   [11] S. V. Dorozhkin, “Bioceramics of Calcium Orthophos-phates,” Biomaterials, Vol. 31, 2010, pp. 1465-1485. doi:10.1016/j.biomaterials.2009.11.050

[12]   [12] M. Fulmer and P. W. Brown, “Low-Temperature Formation of Fluorapatite in Aqueous Solution,” Journal of the Ameri-can Ceramic Society, Vol.75, No.12 1992, pp. 401-407.

[13]   [13] P. Uwe, E. Angela and R. Christian, “A Pyrolytic Route for the Formation of Hydroxyapatite-Fluorapatite Solid Solu-tions,” Journal of Materials Science, Material Medical, Vol. 4, No. 3, 1993, pp. 292-295.

[14]   [14] J. C. Elliott, “Structure and Chemistry of the Apatite and Other Calcium Orthophosphates,” Elsevier Science., Am-sterdam, 1994.

[15]   [15] E. D. Franz and R. Telle, “Reaction Hot Pressing of Fluora-patite for Dental Implants,” In: P. Vincenzini, Ed., Hight Tech Ceramics, Elsevier Science, Amsterdam, 1987, pp. 31-41.

[16]   [16] E. Landi, A. Tampieri, G. Celotti and S. Sprio, “Densifica-tion Behaviour and Mechanisms of Synthetic Hydroxyapa-tites,” Journal of European Ceramic Society, Vol. 20, 2000, pp. 2377-2387. doi:10.1016/S0955-2219(00)00154-0

[17]   [17] F. Ben Ayed, J. Bouaziz and K. Bouzouita, “Résistance Mé-canique de la Fluorapatite, ” Annales de Chimie-Science des Materiaux, Vol. 31, No. 4, 2006, pp. 393-406. doi:10.3166/acsm.31.393-406

[18]   [18] S. Agathopoulos, D. U. Tulyaganov, P. A. A. P. Marques, M. C. Ferro, M. H. V. Fernandes and R. N. Correia, “The Fluora-patite-Anorthite System in Biomedicine,” Biomaterials, Vol. 24, 2003, pp. 1317-1331. doi:10.1016/S0142-9612(02)00468-4

[19]   [19] K. A. Gross and L. M. Rodr?guez-Lorenzo, “Biodegradable Composite Scaffolds with an Interconnected Spherical Net-work for Bone Tissue Engineering,” Biomaterials, Vol. 25, 2004, pp. 4955-4962. doi:10.1016/j.biomaterials.2004.01.046

[20]   [20] A. Rapacz-Kmita , A. Slosarczyk and Z. Paszkiewicz, “Me-chanical Properties of Hap-ZrO2 Composites,” Journal of European Ceramic Society, Vol. 26, 2006, pp. 1481-1488. doi:10.1016/j.jeurceramsoc.2005.01.059

[21]   [21] W. Zhenjun, H. Liping and Z. Chen, “Composite Biocoating of Hydroxyapatite/Al2O3 on Titanium Formed by Al Anodi-zation and Electrodeposition,” Materials Letters, Vol. 61, 2007, pp. 2952-2955. doi:10.1016/j.matlet.2006.10.050

[22]   [22] B. Viswanath and N. Ravishankar, “Interfacial Reactions in Hydroxyapatite/Alumina Nanocomposites,” Scripta Materi-alia, Vol. 55, 2006, pp. 863-866. doi:10.1016/j.scriptamat.2006.07.049

[23]   [23] B. T. Lee, C. W. Lee, A. K. Gain and H. Y. Song, “Micro-structures and Material Properties of Fibrous Hap/Al2O3- ZrO2 Composites Fabricated by Multi-Pass Extrusion Proc-ess,” Journal of European Ceramic Society, Vol. 27, 2007, pp. 157-163. doi:10.1016/j.jeurceramsoc.2006.02.038

[24]   [24] J. M. Ten Cate and J. D. B. Featherstone, “Mechanistic As-pects of the Interaction between Fluoride and Dental Enamel,” Critical Reviews in Oral Biology and Medicine, Vol. 2, 1991, pp. 283-296.

[25]   [25] C. L. Deal, “Osteoporosis: Prevention, Diagnosis, and Man-agement,” American Journal of Medicine, Vol. 102, No. 1A (Supplement), 1997, pp. 35S-9S. doi:10.1016/S0002-9343(97)00415-4

[26]   [26] F. Menaa, B. Menaa and O. Sharts, “Fluoro-Raman Spec-troscopy as New Analytical Tool for Pharmaceutical and Biomedical Applications,” Faraday Discussions, Vol. 149, 2011, pp. 269-278. doi:10.1039/c005252c

[27]   [27] L. L. Demos, H. Kazada, F. M. Cicuttini, M. I. Sinclair and CK. Fairly, “Water Fluoridation, Osteoporosis, Fractures— Recent Developments,” Australian Dental Journal, Vol. 46, No.2, 2001, pp. 80-87. doi:10.1111/j.1834-7819.2001.tb00561.x

[28]   [28] F. Ben Ayed, J. Bouaziz and K. Bouzouita, “Pressureless Sintering of Fluorapatite under Oxygen Atmosphere,” Jour-nal of European Ceramic Society, Vol. 20, No. 8, 2000, pp. 1069-1067. doi:10.1016/S0955-2219(99)00272-1

[29]   [29] F. Ben Ayed, J. Bouaziz and K. Bouzouita, “Calcination and Sintering of Fluorapatite under Argon Atmosphere,” Journal of Alloys and Compounds, Vol. 322, No.1-2, 2001, pp. 238-245. doi:10.1016/S0925-8388(01)01200-2

[30]   [30] J. C. Heughebaert, “Contribution à L’étude de L’évolution des Orthophosphates de Calcium Précipités en Orthophos-phates Apatitiques,” Thèse, INP, Toulouse, 1977.

[31]   [31] G. E. Cootea, R. J. Sparksa and P. Blattnerb, “Nuclear Mi-croprobe Measurement of Fluorine Concentration Profiles, with Application in Archaeology and Geology,” Nuclear In-struments Methods, Vol. 197, 1982, pp. 213-221. doi:10.1016/0167-5087(82)90139-9

[32]   [32] S. Brunauer, P. H. Emmet and J. Teller, “Absorption of Gases in Multimolecular Layers,” Journal of the American Chemical Society, Vol. 60, 1938, pp. 310-319. doi:10.1021/ja01269a023

[33]   [33] R. Z. Legeros, “Crystallography Studies of the Carbonate Substitution in the Apatite Structure,” PhD thesis, New York University, 1967.

[34]   [34] N. Senamaud, D. Bemache-Assollant, E. Champion, M. Heughebaertb and C. Reyb, “Calcination and Sintering of Hydroxyfluorapatite Powders,” Solid State Ionics. 101-103, 1997, pp. 1357-1362. doi:10.1016/S0167-2738(97)00242-7

[35]   [35] S. Kim, Y. M. Kong, I. S. Lee and H. E. Kim, “Effect of Calcinations of Starting Powder on Mechanical Properties of Hydroxyapatite-Alumina Bioceramic Composite,” Journal of Materials Science: Material Medical, Vol. 13, 2002, pp. 307-310. doi:10.1023/A:1014019103240

[36]   [36] D. Santhiya, S. Subramanian, K. A. Natarajan and S. G. Malghan, “Surface Chemical Studies on Alumina Suspen-sions Using Ammonium Poly(Methacrylate),” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 164, 2000, pp. 143-154. doi:10.1016/S0927-7757(99)00347-7

[37]   [37] Y. Chen, S. Liu and G. Wang, “Kinetics and Adsorption Behavior of Carboxymethyl Starch on Α-Alumina in Aque-ous Medium,” Journal of Colloid and Interface Science, Vol. 303, 2006, pp. 380-387. doi:10.1016/j.jcis.2006.08.011

[38]   [38] A. Boumaza, L. Favaro, J. Lédion, G. Sattonnay, J. B. Bru-bach, P.Berthet, A. M. Huntz, P. Roy and R. Tétot, “Transi-tion Alumina Phases Induced by Heat Treatment of Boeh-mite: An X-Ray Diffraction and Infrared Spectroscopy Study,” Journal of Solid State Chemistry, Vol. 182, 2009, pp. 1171-1176. doi:10.1016/j.jssc.2009.02.006

[39]   [39] K. A. Bhadang and K. A. Gross, “Influence of Fluorapatite on the Properties of Thermally Sprayed Hydroxyapatite Coatings,” Biomaterials, Vol. 25, 2004, pp. 4935-4945. doi:10.1016/j.biomaterials.2004.02.043

[40]   [40] M. Hidouri, K. Bouzouita, F. Kooli and I. Khattech, “Ther-mal Behaviour of Magnesium-Containing Fluorapatite,” Materials Chemistry and Physics, Vol. 80, No. 2003, pp. 496-505. doi:10.1016/S0254-0584(02)00553-9

[41]   [41] M. Hidouri, K. Bouzouita, A. Aissa and M. Debbabi, “étude Structurale des Fluorapatites Contenant du Magnésium en Substitution,” Comptes Rendus Chimie, Vol. 7, 2004, pp. 699-705. doi:10.1016/j.crci.2004.04.003

[42]   [42] K. Chaari, F. Ben Ayed, J. Bouaziz and K. Bouzouita, “Elaboration and Characterization of Fluorapatite Ceramic with Controlled Porosity,” Materials Chemistry and Physics, Vol. 113, No.1, 2009, pp. 219-226. doi:10.1016/j.matchemphys.2008.07.079

[43]   [43] Z. He and J. Ma, “Constitutive Modeling of Alumina Sinter-ing: Grain-Size Effect on Dominant Densification Mecha-nism,” Computational Materials Science, Vol. 32, 2005, pp. 196-202. doi:10.1016/j.commatsci.2004.08.006

[44]   [44] J. F. Roy, M. Descemond, C. Brodhag and F. Thevenot, “Alu-mina Microstructural Behaviour under Pressureless Sintering and Hot-Pressing,” Journal of European Ceramic Society, Vol. 11, 1993, pp. 325-333. doi:10.1016/0955-2219(93)90032-M

[45]   [45] P. Quirmbach, M. Wolf and R. J. Brook, “Development of Microstructure during Pressureless Sintering of Alumina,” Journal of European Ceramic Society, Vol. 10, 1992, pp. 51-57. doi:10.1016/0955-2219(92)90118-W

[46]   [46] M. Azar, P. Palmero, M. Lombardi, V. Garnier, L. Mon-tanaro, G. Fantozzi and J. Chevalier, “Effect of Initial Parti-cle Packing on the Sintering of Nanostructured Transition Alumina,” Journal of European Ceramic Society, Vol. 28 2008, pp. 1121-1128. doi:10.1016/j.jeurceramsoc.2007.10.003

[47]   [47] H. Fischer, R. Wei? and R. Telle, “Crack Healing in Alu-mina Bioceramics,” Dental Materials, Vol. 24, 2008, pp. 328-332.

[48]   [48] X. Teng, H. Liu and Ch. Huang, “Effect of Al2O3 Particle size on the Mechanical Properties of Alumina-Based Ceram-ics,” Materials Science and Engineering: A, Vol. 452-453, 2007, pp. 773-780. doi:10.1016/j.msea.2006.10.073

[49]   [49] H. M. Lee, C. Y. Huang and C. J. Wang, “Forming and Sin-tering Behaviors of Commercial α-Al2O3 Powders with Dif-ferent Particle Size Distribution and Agglomeration,” Jour-nal of Materials Processing Technology, Vol. 209, No. 2, 2009, pp. 714-722. doi:10.1016/j.jmatprotec.2008.02.047

[50]   [50] N. Louet, H. Reveron and G. Fantozzi, “Sintering Behaviour and Microstructural Evolution of Ultrapure Α-Alumina Con-taining Low Amounts of SiO2,” Journal of European Ce-ramic Society, Vol. 28, 2008, pp. 205-215. doi:10.1016/j.jeurceramsoc.2007.04.015

[51]   [51] F. Ben Ayed, “Frittage Et Caractérisation de la Fluorapatite,” faculté des sciences de sfax, 2003.

[52]   [52] N. Bouslama, F. Ben Ayed and J. Bouaziz, “Sintering and Mechanical Properties of Tricalcium Phosphate-Fluorapatie Composites,” Ceramics International, Vol. 35, 2009, pp. 1909-1917. doi:10.1016/j.ceramint.2008.10.030

[53]   [53] F. Ben Ayed and J. Bouaziz, “Sintering of Tricalcium Phos-phate-Fluorapatite Composites by Addition of Alumina,” Ceramics International, Vol. 34, 2008, pp. 1885-1892. doi:10.1016/j.ceramint.2007.07.017

[54]   [54] H. Ji and P. M. Marquis, “Sintering Behaviour of Hy-droxyapatite Reinforced with 20 wt% Al2O3,” Journal of Materials Science, Vol. 28, 1993, pp. 1941-1945. doi:10.1007/BF00595767

[55]   [55] H.Y. Juang and M.H. Hon, “Fabrication and Mechanical Properties of Hydroxyapatite-Alumina Composites,” Mate-rial Science and Engineering, Vol. 12, 1994, pp. 77-81. doi:10.1016/0928-4931(94),90033-7

[56]   [56] D. Asmi, I. M. Low, B. H. O’Connor and C. Buckley, “Phase Compositions and Depth Profiling of Calcium Aluminates in a Functionally-Graded Alumina/Calcium- Hex-aluminate Composite,” Journal of Materials Processing Technology, Vol. 118, 2001, pp. 219-224. doi:10.1016/S0924-0136(01)00963-3

[57]   [57] A. Gutiérrez-Alejandre, M. Gonzalez-Crus, M. Trombetta, G. Busca and J. Ramirez, “Chracterisation of Alumina-Titania Mixed Oxide Supports, Part II: Al2O3-Based Supports,” Mi-crop. Mesop. Mat., Vol. 23, 1998, pp. 265-275. doi:10.1016/S1387-1811(98)00121-8

[58]   [58] G. Del Angel, C. Guzman, A. Bonilia, G. Torres amd J. M. “Padilia, Lanthanum Effect on the Structural Properties of γ-Al2O3 Obtained from Bohemite,” Materials Letters, Vol. 59, 2005, pp. 499-502.

[59]   [59] K. J. D. MacKenzie, M. Schmuècker, M. E. Smith, I. J. F. Poplett and T. Kemmitt, “Evolution of Crystalline Aluminates from Hybrid Gel-derived Precursors Studied by XRD and Mul-tinuclear Solid State MAS NMR IV: Calcium Dialuminate, CaAl4O7 and Calcium Hexaluminate,” Thermochemical Acta, Vol. 363, 2000, pp. 181-188. doi:10.1016/S0040-6031(00)00630-4

[60]   [60] B. Lazic, H. Kriiger, V. Kahlenberg, J. Konzett and R. Kaindl, “Incommensurate Structure of Ca2Al2O5 at High Temperature-Structure Investigation and Raman Spectros-copy,” Acta Crystallographica, 2008, pp. 417-425.

[61]   [61] J. M. Poujade, C. Zerbib and D. Serre, “Céramiques den-taires,” EMC-Dentisterie, Vol. 1, 2004, pp. 101-117. doi:10.1016/j.emcden.2003.11.002