IJOC  Vol.4 No.1 , March 2014
Highly-Efficient Conversion of Primary Amides to Nitriles Using Indium(III) Triflate as the Catalyst
Abstract: Indium(III) triflate, a trivalent indium reagent, was shown to be a highly-efficient catalyst for the conversion of primary amides to the corresponding nitriles. The successful reactions required 5 mol% of indium(III) triflate, and toluene was proved to be the most suitable solvent. Various amides were subjected to this method, and each produced the corresponding nitriles in excellent yields.
Cite this paper: Mineno, T. , Shinada, M. , Watanabe, K. , Yoshimitsu, H. , Miyashita, H. and Kansui, H. (2014) Highly-Efficient Conversion of Primary Amides to Nitriles Using Indium(III) Triflate as the Catalyst. International Journal of Organic Chemistry, 4, 1-6. doi: 10.4236/ijoc.2014.41001.

[1]   Larock, R.C. (1999) Comprehensive Organic Transformations. 2nd Edition, John Wiley & Sons Inc., New York.

[2]   Schareina, T., Zapf, A. and Beller, M. (2004) Potassium Hexacyanoferrate(II)-a New Cyanating Agent for the Palladium-Catalyzed Cyanation of Aryl Halides. Chemical Communications, 12, 1388-1389.

[3]   Cristau, H.-J., Ouali, A., Spindler, J.-F. and Taillefer, M. (2005) Mild and Efficient Copper-Catalyzed Cyanation of Aryl Iodides and Bromides. Chemistry A European Journal, 11, 2483-2492.

[4]   Zanon, J., Klapars, A. and Buchwald, S.L. (2003) Copper-Catalyzed Domino Halide Exchange-Cyanation of Aryl Bromides. Journal of the American Chemical Society, 125, 2890-2891.

[5]   Ellis, G.P. and Romney-Alexander, T.M. (1987) Cyanation of Aromatic Halides. Chemical Reviews, 87, 779-794.

[6]   Zhou, W., Zhang, L. and Jiao, N. (2009) Direct Transformation of Methyl Arenes to Aryl Nitriles at Room Temperature. Angewandte Chemie, International Edition, 48, 7094-7097.

[7]   Kent, R.E. and McElvan, S.M. (1945) Isobutyronitrile. Organic Syntheses, 25, 61-62.

[8]   Reisner, D.B. and Hornig, E.C. (1950) Chloroacetonitrile. Organic Syntheses, 30, 22-23.

[9]   Sugimoto, O., Mori, M., Moriya, K. and Tanji, K. (2001) Application of Phosphonium Salts to the Reactions of Various Kinds of Amides. Helvetica Chimica Acta, 84, 1112-1118.<1112::AID-HLCA1112>3.0.CO;2-8

[10]   Krynitsky, J.A. and Carhart, H.W. (1952) 2-Ethylhexanonitrile. Organic Syntheses, 32, 65-67.

[11]   Rickborn, B. and Jensen, F.R. (1962) “α-Carbon Isomerization in Amide Dehydrations. Journal of Organic Chemistry, 27, 4608-4610.

[12]   Kim, S. and Yi, K.Y. (1986) Di-2-Pyridyl Sulfite. A New Useful Reagent for the Preparation of N-Sulfinylamines, Nitriles, Isocyanides, and Carbodiimides under Mild Conditions. Tetrahedron Letters, 27, 1925-1928.

[13]   Bose, D.S. and Goud, P.R. (1999) Aryl Chlorothionoformate: A New Versatile Reagent for the Preparation of Nitriles and Isonitriles under Mild Conditions. Tetrahedron Letters, 40, 747-748.

[14]   Campagna, F., Carotti, A. and Casini, G. (1977) A Convenient Synthesis of Nitriles from Primary Amides under Mild Conditions. Tetrahedron Letters, 18, 1813-1816.

[15]   Hiegel, G.A., Ramirez, J. and Barr, R.K. (1999) Chlorine Substitution Reactions Using Trichloroisocyanuric Acid with Triphenylphosphine. Synthetic Communications, 29, 1415-1419.

[16]   Hanada, S., Motoyama, Y. and Nagashima, H. (2008) Hydrosilanes Are Not Always Reducing Agents for Carbonyl Compounds but Can Also Induce Dehydration: A Ruthenium-Catalyzed Conversion of Primary Amides to Nitriles. European Journal of Organic Chemistry, 2008, 4097-4100.

[17]   Watanabe, Y., Okuda, F. and Tsuj, Y. (1990) Ruthenium Complex-Catalyzed Dehydration of Carboxamides to Nitriles in the Presence of Urea Derivatives. Journal of Molecular Catalysis, 58, 87-94.

[18]   Blum, J. and Fisher, A. (1970) Synthesis of Nitriles from Secondary Amides. Tetrahedron Letters, 11, 1963-1966.

[19]   Blum, J., Fisher, A. and Greener, E. (1973) Catalytic Decomposition of Secondary Carboxamides by Transition-Metal Complexes. Tetrahedron, 29, 1073-1081.

[20]   Campbell, J.A., McDougald, G., McNab, H., Rees, L.V.C. and Tyas, R.G. (2007) Laboratory-Scale Synthesis of Nitriles by Catalyzed Dehydration of Amides and Oximes under Flash Vacuum Pyrolysis (FVP) Conditions. Synthesis, 2007, 3179-3184.

[21]   Maffioli, S.I., Marzorati, E. and Marazzi, A. (2005) Mild and Reversible Dehydration of Primary Amides with PdCl2 in Aqueous Acetonitrile. Organic Letters, 7, 5237-5239.

[22]   Sueoka, S., Mitsudome, T., Mizugaki, T., Jitsukawa, K. and Kaneda, K. (2010) Supported Monomeric Vanadium Catalyst for Dehydration of Amides to Form Nitriles. Chemical Communications, 46, 8243-8245.

[23]   Ishihara, K., Furuya, Y. and Yamamoto, H. (2002) Rhenium(VII) Oxo Complexes as Extremely Active Catalysts in the Dehydration of Primary Amides and Aldoximes to Nitriles. Angewandte Chemie, International Edition, 41, 2983-2986.<2983::AID-ANIE2983>3.0.CO;2-X

[24]   Furuya, Y., Ishihara, K. and Yamamoto, H. (2007) Perrhenic Acid-Catalyzed Dehydration from Primary Amides, Aldoximes, N-Monoacylureas, and α-Substituted Ketoximes to Nitrile Compounds. Bulletin of the Chemical Society of Japan, 80, 400-406.

[25]   Enthaler, S. (2011) Straightforward Uranium-Catalyzed Dehydration of Primary Amides to Nitriles. Chemistry A European Journal, 17, 9316-9319.

[26]   Enthaler, S. (2011) Straightforward Iron-Catalyzed Synthesis of Nitriles by Dehydration of Primary Amides. European Journal of Organic Chemistry, 2011, 4760-4763.

[27]   Enthaler, S. andInoue, S. (2012) An Efficient Zinc-Catalyzed Dehydration of Primary Amides to Nitriles. Chemistry An Asian Journal, 7, 169-175.

[28]   Zhou, S., Addis, D., Das, S., Junge, K. and Beller, M. (2009) New Catalytic Properties of Iron Complexes. Dehydration of Amides to Nitriles. Chemical Communications, 32, 4883-4885.

[29]   Enthaler, S. and Weidauer, M. (2011) Copper-Catalyzed Dehydration of Primary Amides to Nitriles. Catalysis Letters, 141, 1079-1085.

[30]   Manjula, K. and Pasha, M.A. (2007) Rapid Method of Converting Primary Amides to Nitriles and Nitriles to Primary Amides by ZnCl2 Using Microwaves under Different Reaction Conditions. Synthetic Communications, 37, 1545-1550.

[31]   Barman, D.C., Thakur, A.J., Prajapati, D. and Sandhu, J.S. (2000) Indium-Mediated Facile Dehydration and Beckmann Rearrangement of Oximes. Chemistry Letters, 10, 1196-1197.

[32]   Sun, H.-B., Li, B., Chen, S., Li, J. and Hua, R. (2007) An Efficient Synthesis of Unsymmetrical Diarylmethanes from the Dehydration of Arenes with Benzyl Alcohols Using InCl3?4H2O/Acetylacetone Catalyst System. Tetrahedron, 63, 10185-10188.

[33]   Mineno, T. (2002) A Fast and Practical Approach to Tetrahydropyranylation and Depyranylation of Alcohols Using Indium Triflate. Tetrahedron Letters, 43, 7975-7978.

[34]   Mineno, T., Nikaido, H. and Kansui, H. (2009) One-Step Transformation of Tetrahydropyranyl Ethers Using Indium(III) Triflate as the Catalyst. Chemical & Pharmaceutical Bulletin, 57, 1167-1170.

[35]   Mineno, T. and Kansui, H. (2006) High Yielding Methyl Esterification Catalyzed by Indium(III) Chloride. Chemical & Pharmaceutical Bulletin, 54, 918-919.

[36]   Mineno, T., Sakai, M., Ubukata, A., Nakahara, K., Yoshimitsu, H. and Kansui, H. (2013) The Effect of Indium(III) Triflate in Oxone-Mediated Oxidative Methyl Esterification of Aldehydes. Chemical & Pharmaceutical Bulletin, 61, 870-872.

[37]   Rokade, B.V., Malekar, S.K. and Prabhu, K.R. (2012) A Novel Oxidative Transformation of Alcohols to Nitriles: An Efficient Utility of Azides as a Nitrogen Source. Chemical Communications, 48, 5506-5508.