Polyhedral symmetry and quantum mechanics

Show more

References

[1] Pauling, L. (1990) Regularities in the sequences of the number of nucleons in the revolving clusters for the ground-state energy bands of the even-even nuclei with neutron number equal to or greater than 126. Proceedings of the National Academy of Science USA, 87, 4435-4438, and references therein.

http://dx.doi.org/10.1073/pnas.87.12.4435

[2] Cook, N.D. (1994) Nuclear binding energies in lattice models. Journal of Physics G (Nuclear and Particle Physics), 20, 1907-1917 and references therein.

[3] Rae, W.D.M. and Zhang, J. (1994) Triangular alpha cluster geometries and harmonic oscillator shell structure. Modern Physics Letters A, 9, 599-607 and references therein.

http://dx.doi.org/10.1142/S021773239400383X

[4] Robson, D. (1978) Many-body interactions from quark exchanges and the tetrahedral crystal structure of nuclei. Nuclear Physics A, 308, 381-428 and references therein.

http://dx.doi.org/10.1016/0375-9474(78)90558-4

[5] Naher, U., Zimmermann, U. and Martin, T.P., (1993) Geometrical shell structure of clusters. Journal of Chemical Physics, 99, 2256-2260.

http://dx.doi.org/10.1063/1.465235

[6] Hecht, L. (1988) The geometrical basis for the periodicity of the elements.

[7] White, (1987) New hypothesis shows geometry of atomic nucleus. Executive Intelligence Review, 14, 18.

[8] Anagnostatos, G.S., Giapitzakis, J. and Kyritsis, A. (1981) Rotational invariance of orbital-angular-momentum quantization of direction for degenerate states. Lettere Nuovo Cimento, 32, 332-335.

http://dx.doi.org/10.1007/BF02745301

[9] Anagnostatos, G.S. (1980) The geometry of the quantization of angular momentum (l, s, j) in fields of central symmetry. Lettere Nuovo Cimento, 28, 573-576.

http://dx.doi.org/10.1007/BF02776343

[10] Anagnostatos, G.S. (1980) Symmetry description of the independent particle model. Lettere Nuovo Cimento, 29, 188-192. http://dx.doi.org/10.1007/BF02743377

[11] Anagnostatos, G.S., Ginis, P. and Giapitzakis, J. (1998) α-Planar states in 28Si”. Physical Review C, 58, 33053315. http://dx.doi.org/10.1103/PhysRevC.58.3305

[12] Kakanis, P.K. and Anagnostatos, G.S. (1996) Persisting α-planar structure in 20Ne. Physical Review C, 54, 29963013. http://dx.doi.org/10.1103/PhysRevC.54.2996

[13] Anagnostatos, G.S. (1999) Alpha-chain states in 12C”. Physical Review C, 51, 152-159.

http://dx.doi.org/10.1103/PhysRevC.51.152

[14] Anagnostatos, G.S. (2013) Quantum isomorphic shell model: Multi harmonic shell clustering in nuclei. Journal of Modern Physics, 4, 54-65.

http://dx.doi.org/10.4236/jmp.2013.45B011

[15] Merzbacher, E. (1961) Quantum mechanics. John Wiley and Sons Ltd., New York, p. 42.

[16] Cohen-Tannoudji, C., Diu, B. and Laloe, F. (1977) Quantum mechanics. John Wiley & Sons Ltd., New York, p. 240.

[17] Anagnostatos, G.S., Antonov, A.N., Ginis, P., et. al. (1998) Nucleon momentum and density distributions in 4He considering internal rotation. Physical Review C, 58, 21152119.

http://dx.doi.org/10.1103/PhysRevC.58.2115

[18] Anagnostatos, G.S. and Panos C.N. (1982) Effective twonucleon potential for high-energy heavy-ion collisions. Physical Review C, 26, 260-264.

http://dx.doi.org/10.1103/PhysRevC.26.260

[19] Panos, C.N. and Anagnostatos, G.S. (1982) Comments on a relation between average kinetic energy and meansquare radius in nuclei. Journal of Physics G: Nuclear Physics, 8, 1651-1658.

http://dx.doi.org/10.1088/0305-4616/8/12/007

[20] Hornyak, W.F. (1975) Nuclear structure. Academic, New York, pp. 13, 240, 237.

[21] Anagnostatos, G.S. (1989) Classical equations-of-motion model for high-energy heavy-ion collisions. Physical Review C, 39, 877-883.

[22] Anagnostatos, G.S. and Panos, C.N. (1990) Semiclassical simulation of finite nuclei. Physical Review C, 42, 961965. http://dx.doi.org/10.1103/PhysRevC.42.961

[23] Sherwin, C.W. (1959) Introduction to quantum mechanics. Holt, Rinehart and Winston, New York, p. 205.

[24] Leech, J. (1957) Equilibrium of sets of particles on a sphere. Mathematical Gazette, 41, 81-90.

http://dx.doi.org/10.2307/3610579

[25] Vergados, J.D. (1970) Mathematical methods in physics. Akourastos Giannis.

[26] Anagnostatos, G.S. (2008) A new look at super-heavy nuclei. International Journal of Modern Physics B, 22, 45114523. http://dx.doi.org/10.1142/S0217979208050267

[27] Anagnostatos, G.S. (2008) On the possible stability of tetraneutrons and hexaneutrons. International Journal of Modern Physics E, 17, 1557-1575.

http://dx.doi.org/10.1142/S0218301308010568

[28] Paschalis, S. and Anagnostatos, G.S. (2013) Ground state of 4-7H considered internal collective rotation. Journal of Modern Physics, 4, 66-77.

http://dx.doi.org/10.4236/jmp.2013.45B012

[29] Anagnostatos, G.S. (1991) Fermion/boson classification in micro-clusters. Physics Letters A, 157, 65-72.

http://dx.doi.org/10.1016/0375-9601(91)90410-A

[30] Cundy, H.M. and Rollett (1961) Mathematical models. 2nd Edition, Oxford University Press, Oxford.

[31] Coxeter, H.S.M. (1963) Regular polytopes. 2nd Edition, The Mcmillan Company, New York.