[1] Curie, P. (1894) Symmetry in electric and magnetic phenomena (Sur les Symétries des phénomènes électriques et magnétiques). Journal de Physique, série III, t. III.
[2] Weyl, H. (1964) Symmetry and mathematics (Symétries et Mathématiques Modernes). Flammarion.
[3] Einstein, A. (1905) On the electrodynamics of moving bodies (English version). Annalen der Physik XVII.
[4] Lorentz, A.H. (1904) Electromagnetic phenomena (English version). Proceedings of the Academy of Sciences of Amsterdam, 6.
[5] Minkowski, H. (1908) Space and time. Address delivered at the 80th Assembly of German Natural Scientists and Physicians, Cologne.
[6] Landau-Lifschitz (1994) The classical theory of fields. 4th Revised English Edition, Pergamon.
[7] Einstein, A. (1905) Does the Inertia of a body depend upon its Energy content. Annalen der Physik XVII.
[8] Einstein, A. (1922) The meaning of relativity. Lectures delivered at Princeton University, 5th Edition, Princeton University Press, Princeton.
[9] Wigner, E. (1959) Group theory and its applications to the quantum mechanics of atomic spectra (English version). Academic Press Inc., New York.
[10] Dirac, P.A.M. (1984) The principles of quantum mechanics. 4th Edition Revised.
[11] Einstein, A. (1905) Point de vue heuristique concernant la production et la transformation de la Lumière (French version). Annalen der Physik, XVII, 132-148.
http://dx.doi.org/10.1002/andp.19053220607
[12] De Broglie, L. (1930) Introduction to wave mechanics (Introduction? L’étude de la M? canique Ondulatoire). Lectures given at the Henri Poincare Institute, Masson Editions.
[13] Messiah, A. (1995) Quantum Mechanics I (Mécanique Quantique. Tome I). Masson Editions.
[14] Messiah, A. (1995) Quantum Mechanics II [Mécanique Quantique. Tome II). Masson Editions.
[15] Dirac, P. (1928) Quantum Theory of the Electron I and II. Proceedings of Royal Society, London, A117, 610 and A118, 351. http://dx.doi.org/10.1098/rspa.1928.0056
[16] Dirac, P. (1934) Théorie du Positron (published in French). Rapport du Conseil Solvay de Physique, Structure et Propriétés du Noyau Atomique, 20.
[17] Anderson, C.D. (1933) The positive electron. Physical Review, 43, 491.
http://dx.doi.org/10.1103/PhysRev.43.491
[18] Cahn, R.N. and Goldhaber, G. (1989) The experimental foundations of particle physics. Cambridge University Press, Cambridge.
[19] Schwinger, J. (1958) Selected papers on quantum electrodynamics. Dover Publications.
[20] Wigner, E. (1939) On unitary representations of the inhomogenuous lorentz group. Annals of Mathematics, 40, 39. http://dx.doi.org/10.2307/1968551
[21] Wigner, E. (1959) Group theory and its applications to the quantum mechanics of atomic spectra (English version). Academic Press Inc., New York. Chapters 18 and 26.
[22] Lee, T.D. and Yang C.N. (1956) Question on parity conservation in weak interactions. Physical Review, 102, 290.
http://dx.doi.org/10.1103/PhysRev.102.290
[23] Wu, C.S. (1957) Experimental tests of parity conservation in beta decay. Physical Review, 105, 1413.
http://dx.doi.org/10.1103/PhysRev.105.1413
[24] Garwin, R.L., Lederman, L.M. and Weinrich, M. (1957) Observation of the failure of conservation of parity and charge conjugation in meson decays. Physical Review, 105, 1415.
http://dx.doi.org/10.1103/PhysRev.105.1415
[25] Landau, L.D. (1957) Conservation laws in weak interactions. Journal of Experimental and Theoretical Physics, 32, 405-406.
[26] Christenson, J.H. and Cronin, J.W. (1964) Evidence for the 2π decay of the meson. Physical Review Letters, 13, 138. http://dx.doi.org/10.1103/PhysRevLett.13.138
[27] Wigner, E. (1964) Symmetry and conservation laws. Physics Today, 17, 34-40.
http://dx.doi.org/10.1063/1.3051467
[28] Several authors have postulated the CPT theorem by similar approaches. The pioneering one was the paper of G. Lüders (1957) Proof of the TCP theorem. Annals of Physics, 2, 1-15.
[29] Lee, T.D., Oehme, R. and Yang, C.N. (1957) Remarks on possible noninvariance under time reversal and charge conjugation. Physical Review, 106, 340.
http://dx.doi.org/10.1103/PhysRev.106.340
[30] Yang, C.N. and Mills, R.L. (1954) Conservation of isotopic spin and isotopic gauge invariance. Physical Review, 96, 191. http://dx.doi.org/10.1103/PhysRev.96.191
[31] Gellmann, M. (2013) The quark model. International Journal of Modern Physics A, 28, 1330016.
[32] Greenberg, O.W. (1964) Spin and unitary-spin independence in a paraquark model of baryons and mesons. Physical Review Letters, 13, 598.
[33] Lichtenberg, D.B. (1970) Unitary symmetry and elementary particles. Academic Press, New-York.
[34] Weinberg S. (1980) Conceptual foundations of the unified theory of weak and electromagnetic interactions. Reviews of Modern Physics, 52, 515.
[35] Abdus, S. (1980) Gauge unification of fundamental forces. Reviews of Modern Physics, 52, 525.
[36] Glashow, S.L. (1980) Towards a unified theory: Threads in tapestry. Reviews of Modern Physics, 52, 539.
[37] For a clear and concise introduction to the Standard Model, one can consult the excellent book of C. Quigg (1983) Gauge Theories of the Strong, Weak and Electromagnetic Interactions. Frontiers in Physics.
[38] Perl, M.L. (1975) Evidence for anomalous lepton production in annihilation. Physical Review Letters, 35, 1489.
[39] Brandelik, R. (1978) Measurement of Tau decay modes and a precise determination of the mass. Physical Letter B, 73, 109.