ANP  Vol.3 No.1 , February 2014
Thermophoresis of Carboxylic Nanotubes in Gaseous Atmosphere
ABSTRACT

The present paper deals with motion of carbon nanotubes in a temperature gradient field. A determined-static theory of nanosized particles thermophores is developed. Analytical expressions for thermophoretic velocity and force of ultramicroheterogeneous particles in a gaseous atmosphere under near-normal conditions are provided. The calculations performed according to the suggested theory, as applied to closed carbon nanotubes, found the value of dimensionless velocity of thermophoresis. In accordance with the proposed hypothesis, Waldman’s limit is achieved, which is expressed in constancy of thermophoretic velocity within the interval of the Knudsen parameter change from 10 to 100. In addition, it is found out that under conditions defined below, velocity of thermophoresis is independent of the length of a carboxylic nanotube. A good agreement with experiments is reached, which makes it possible to assume correspondence of the theory to the physical truth.


Cite this paper
Bubenchikov, A. , Potekaev, A. , Bubenchikov, M. , Korobitsyn, V. and Klykov, I. (2014) Thermophoresis of Carboxylic Nanotubes in Gaseous Atmosphere. Advances in Nanoparticles, 3, 36-40. doi: 10.4236/anp.2014.31006.
References
[1]   Z. R. Gorbis and F. E. Spokoinyi, “Физическая модель и математическое описание процесса движения мелких частиц в турбулентном потоке газовзвеси,” Teplofizika Vysokikh Temperatur, Vol. 15, No. 2, 1977, pp. 399-408.

[2]   Y. V. Valsyferov and S. M. Muradyan, “Численный расчёт процессов тепломассопереноса при течении газа с частицами в прямолинейном цилиндрическом канале,” Teplofizika Vysokikh Temperatur, Vol. 22, No. 6, 1977, pp. 11521157.

[3]   S. P. Bakanov, “Термофорез вгазах при малых числах Кнудсена,” Uspekhi Fizicheskikh Nauk, Vol. 162, No. 9, 1992, pp. 133-152.
http://dx.doi.org/10.3367/UFNr.0162.199209d.0133

[4]   V. P. Redchits and Y. I. Yalamov, “Термофорез несферической частицы в гидродинамическом режиме,” Physics Mathematics, Moscow Region State University, Moscow, No. 1, 2008, pp. 3-8.

[5]   S. P. Bakanov, “О термофорезе в газах,,” Applied Mathematics and Mechanics, Vol. 69, No. 5, 2005, pp. 855-860.

[6]   A. I. Potekaev, A. M. Bubenchikov and M. A. Bubenchikov, “Новые физические представления и метод описания и расчёта сопротивления движению малых частиц в газообазной среде,” Russian Physics Journal, Vol. 55, No. 12, 2012, pp. 54-61.

[7]   M. A. Bubenchikov, A. I. Potekaev and A. M. Bubenchikov, “Три фундаментальные задачи молекулярной статистики,” Journal of Physics, Vol. 3, 2013, pp. 94100.

[8]   E. A. Chernova, A. E. Turetskii, G. N. Lipatov and N. K. Kopyt, “Термофорез умеренно крупных частиц,” Physics of Airdispersed Systems: Interdepartmental Collected Works, Odessa, The I.I. Melchikov Odessa National University, Odessa, 2009, pp. 149-157.

[9]   F. Prodi and G. Santacihara, “Measurements of Thermophoretic Velocities of Aerosol Particles in the Transition Region,” Journal of Aerosol Science, Vol. 10, No. 4, 1979, pp. 421-425.
http://dx.doi.org/10.1016/0021-8502(79)90037-5

[10]   A. I. Storozhilova and G. I. Scherbina, “Измерение скорости термофореза крупных аэрозольных частиц и применение результатов измерения к определению коэффициентов теплового скольжения газа,” Doklady Akademii Nauk SSSR, Vol. 217, No. 2, 1974, pp. 386-389.

[11]   L. Talbot, R. K. Cheng, R. W. Schefer and D. R. Willis, “Thermophoresis of Particles in a Heated Boundary Layer,” Journal of Fluid Mechanics, Vol. 12, No. 101, 1980, pp. 737-758.

 
 
Top