Estimation of Hazard Function for Censoring Random Variable by Using Wavelet Decomposition and Evaluation of MISE, AMSE with Simulation

Show more

References

[1] A. Haar, “Zur Thorie der Orthogonal Functioned-System,” Annals of Mathematics, Vol. 69, No. 3, 1910, pp. 331-371.
http://dx.doi.org/10.1007/BF01456326

[2] P. Doukhan, “Mixing Properties and Examples,” Springer-Verlag, New York, 1995.

[3] A. Antoniadis, “Smoothing Noisy Data with Tapered Coiflet Series,” Scandinavian Journal of Statistics, Vol. 23, 1996, pp. 313-330.

[4] S. G. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, No. 7, 1989, pp. 674-693.
http://dx.doi.org/10.1109/34.192463

[5] Y. Meyer, “Ondelettes et Operateurs,” Hermann, Paris, 1990.

[6] I. Daubechies, “Ten Lectures on Wavelets,” SIAM, Philadelphia, 1992.

[7] D. L. Donoha and I. M. Johnstone, “Ideal Spatial Adaptation by Wavelet Shrinkage,” Biometrika Journal, Vol. 81, No. 3, 1994, pp. 425-455.
http://dx.doi.org/10.1093/biomet/81.3.425

[8] G. Kerkyacharian and D. Picard, “Density Estimation by Kernel,” Probability and Letters, Vol. 18, No. 4, 1993, pp. 327-336.
http://dx.doi.org/10.1016/0167-7152(93)90024-D

[9] P. Hall and P. Patil, “Formula for Mean Integrated Squared Error of Non-Linear Wavelet Based Density Estimators,” Annals of Statistics, Vol. 23, No. 3, pp. 905-928.
http://dx.doi.org/10.1214/aos/1176324628

[10] A. Antoniadis, G. Gregoire and G. P. Nason, “Density and Harzard Rate Estimation for Right Censored Data Using Wavelet Methods,” Journal of Royal Statistical Society, Series B, Vol. 61, No. 1, 1999, pp. 63-84.
http://dx.doi.org/10.1111/1467-9868.00163

[11] I. Daubechies, “Orthogonal Bases of Compactly Supported Wavelets,” Communication in Pure and Applied Mathematics, Vol. 41, No. 7, 1988, pp. 909-996.
http://dx.doi.org/10.1002/cpa.3160410705

[12] M. Afshari, “A Fast Wavelet Algorithm for Analyzing of Signal Processing and Empirical Distribution of Wavelet Coefficients with Numerical Example and Simulation,” Communication of Statistics-Theory and Methods, Vol. 42, No. 22, 2013, pp. 4156-4169.
http://dx.doi.org/10.1080/03610926.2011.642917

[13] M. Afshari, “Wavelet Density Estimation of Censoring Data and Evaluate of Mean Integral Square Error with Convergence Ratio and Empirical Distribution of Given Estimator,” 2013, under print.

[14] H. Doosti, M. Afshari and H. A. Niroomand, “Wavelets for Nonparametric Stochastic Regression with Mixing Stochastic Process,” Communication of Statistics-Theory and Methods, Vol. 37, No. 3, 2008, pp. 373-385.
http://dx.doi.org/10.1080/03610920701653003