NS  Vol.6 No.3 , February 2014
Depreciation factor equation to evaluate the economic losses from ground failure due to subsidence related to groundwater withdrawal
Abstract: Subsidence due to groundwater withdrawal is a complex hydrogeological process affecting numerous cities settled on top of fluviolacustrine deposits. The discrete spatial variation in the thickness of these deposits, in combination with subsidence due to groundwater withdrawal, generates differential settlements and aseismic ground failure (AGF) characterized by a welldefined scarp. In cities, such AGF causes severe damages to urban infrastructure and considerable economic impact. With the goal of arriving to a general criterion for evaluating the economic losses derived from AGF, in the present work we propose the following equation: ELi = PVi*DFi. Where PVi is the value of a property “i”, and DFi is a depreciation factor caused by structural damages of a property “i” due to AGF. The DFi is calculated empirically through: . This last equation is based on the spatial relations of coexistence and proximity of property polygons and the AGF axis. The coexistence is valued as the quotient of the affectation area divided by the total area of the involved property; and the proximity to the AGF axis is expressed as the inverse of the perpendicular distance from the centroid of the property polygon to the AGF axis. The sum of these terms is divided by two to determine the percentage that affects the property value (PVi). These equations are relevant because it is the first indicator designed for the discrete assessment of the economic impacts due to AGF, and can be applied to real estate infrastructure from either urban or rural areas.
Cite this paper: Hernández-Madrigal, V. , Muñiz-Jáuregui, J. , Garduño-Monroy, V. , Flores-Lázaro, N. and Figueroa-Miranda, S. (2014) Depreciation factor equation to evaluate the economic losses from ground failure due to subsidence related to groundwater withdrawal. Natural Science, 6, 108-113. doi: 10.4236/ns.2014.63015.

[1]   Holzer, T.L. (1984) Ground failure induced by groundwater withdrawal from unconsolidated sediment. In: Holzer, T.H., Ed., Man-Induced Land Subsidence, VI, Geological Society of America. Reviews in Engineering Geology, Colorado, 67-105.

[2]   Garduno-Monroy, V.H., Arryegue-Rocha, E., IsradeAlcántara, I. and Rodríguez-Torres, G.M. (2001) Efectos de las fallas asociadas a sobreexplotación de acuíferos y la presencia de fallas potencialmente sísmicas en Morelia, Michoacán, México. Revista Mexicana de Ciencias Geológicas, 18, 37-54.

[3]   Hernández-Madrigal, V.M., Garduno-Monroy, V.H. and ávila-Olivera, J.A. (2011) Atlas de peligros geológicos de la ciudad de Morelia, Mich: Estandarización del documento, actualización cartográfica de la fallas geológicas de la zona urbana, y evaluación de tasas de hundimiento. Secretaría de desarrollo Social (SEDESOL), H. Ayuntamiento de Morelia, Morelia.

[4]   Sandoval, J.P. and Bartlett, S.R. (1991) Land subsidence and earth fissuring on the Central Arizona Project, Arizona. Proceedings of the Fourth International Symposium on Land Subsidence, Houston, May 1991, 249-260.

[5]   Galloway, D., Jones, D.R. and Ingebritsen, S.E. (1999) Land subsidence in the United States. US Geological Survey Circular 1182.

[6]   Geng, D.-Y. and Li, Z.-S. (2000) Ground fissure hazards in USA and China. Acta Seismologicasinica, 13, 466-476.

[7]   Wang, G.Y., You, G.G., Shi, B., Wu, S.L. and Wu, J.Q. (2010) Large differential land subsidence and earth fissures in Jiangyin, China. Environmental Earth Sciences, 61, 1085-1093.

[8]   Wang, G.Y., You, G., Shi, B., Qiu, Z.L., Li, H.Y. and Tuck, M. (2010) Earth fissures in Jiangsu Province, China and geological investigation of Hetang earth fissure. Environmental Earth Sciences, 60, 35-43.

[9]   Zhang, A.G. and Wei, Z.X. (2005) Land subsidence in China. Shanghai Science and Technology Press, Shanghai, 240.

[10]   Phien-wej, N., Giao, P.H. and Nutalaya, P. (2006) Land subsidence in Bangkok, Thailand. Engineering Geology, 82, 187-210.

[11]   Gambolati, G. and Frezze, R.A. (1973) Mathematical simulation of the subsidence of Venice: Theory. Water Resources Research, 9, 721-733.

[12]   Díaz-Salmerón, J.E. (2010) Geometría y monitoreo con GPS de los procesos de subsidencia-cree-falla (PSCF), en la ciudad de Celaya, Guanajuato, México. Master Thesis, Universidad Michoacana de San Nicolás de Hidalgo, Michoacán.

[13]   Giordano, N. (2010) Estudio con georadar (GPR) de la geometría de los procesos de subsidencia-creep-falla (PSCF), en la ciudad de Celaya, Guanajuato, México. Master Thesis, Universidad Michoacana de San Nicolás de Hidalgo, Michoacán.

[14]   Adrian, O.G., Rudolph, D.L. and Cherry, J.A. (1999) The analysis of long term land subsidence near Mexico City: Field investigations and predictive modeling. Water Resources Research, 35, 3327-3341.

[15]   Garduno-Monroy, V.H., Rodríguez-Torres, G.M., IsradeAlcántara, I., Arreygue-Rocha, E., Canuti, P. and Chiesa, S. (1999) Efectos del clima (El Nino) en los fenómenos de fluencia de las fallas geológicas de la ciudad de Morelia. GEOS, Unión Geofísica Mexicana, 9, 84-93.

[16]   Pacheco, J., Arzate, J., Rojas, E., Arroyo, M., Yutsis, V. and Ochoa, G. (2006) Delimitation of ground failure zones due to land subsidence using gravity data and finite element modeling in the Querétaro valley, México. Engineering Geology, 84, 143-160.

[17]   Trujillo-Candelaria, J.A. (1985) Subsidencia de terreno en la ciudad de Celaya, Gto. In: Reunión sobre Asentamientos Regionales, México, DF, Sociedad Mexicana de Suelo, Asociación Geohidrología Mexicana, Veracruz, 12.

[18]   Martínez-Reyes, J. and Nieto-Samaniego, A.F. (1990) Efectos geológicos de la tectónica reciente en la parte central de México. Universidad Nacional Autónoma de México, Instituto de Geología, Revista, 9, 33-50.

[19]   Alexander, D. (1993) Natural disasters. UCL Press, London.

[20]   Rodríguez-Castillo, R. and Rodríguez-Velázquez, I. (2006) Consecuencias sociales de un desastre inducido, subsidencia. Boletín de la Sociedad Geológica Mexicana, 2, 265-269.

[21]   ESRI (2011) ArcGIS Desktop: Release 10. Environmental Systems Research Institute, Redlands.