IJG  Vol.5 No.2 , February 2014
Fossil Stomatocysts in Upper Cretaceous Sedimentary Pyrite from Central Mexico
ABSTRACT

In this paper six fossil forms of Chrysophycean stomatocysts are described. The material was collected from sedimentary pyrite embedded in well-laminated organic-rich limestone of the Upper Cretaceous Agua Nueva Formation at the locality of Xilitla, Central Mexico. The stomatocysts are represented by two spherical specimens with smooth surfaces lacking of ornamentation, three ovoid forms with rugose textures, one of them exposing presence of pore without collar, and one spherical specimen showing rugose texture and the presence of two short and rounded projections. The specimens here described showed affinity with some stomatocysts morphotypes described for brackish and fresh water, but not for known marine specimens. The presence of these microfossils in the Agua Nueva Formation represents the first formal description of fossil stomatocysts in Upper Cretaceous sedimentary pyrite in Mexico. The occurrence of both micro (planktonic foraminifera, calcispheres, radiolarians) and macrobiota (ammonites, inoceramid bivalves and fishes) and the presence of the specimens in sedimentary pyrite suggest that the stomatocysts were preserved under oxygen-deficiency conditions in a low energy environment. This event could have occurred in open marine waters in the Tampico-Misantla basin (Central Mexico) during the late Cenomanian throughout the early Turonian.


Cite this paper
Castañeda-Posadas, C. , Blanco-Piñón, A. , Hernández-Ávila, J. , Ambrocio-Cruz, S. , Lizárraga-Mendiola, L. and Ángeles-Trigueros, S. (2014) Fossil Stomatocysts in Upper Cretaceous Sedimentary Pyrite from Central Mexico. International Journal of Geosciences, 5, 214-221. doi: 10.4236/ijg.2014.52023.
References
[1]   J. W. Schopf, E. G. Ehlers, D. V. Stiles and J. D. Birle, “Fossil Iron Bacteria Preserved in Pyrite,” Proceedings of the American Philosophical Society, Vol. 109, 1965, pp. 288-308.

[2]   J. W. Schopf, “Modes of Fossil Preservation,” Review of Paleobotany and Palynology, Vol. 20, No. 1-2, 1975, pp. 27-53. http://dx.doi.org/10.1016/0034-6667(75)90005-6

[3]   J. Schieber, “Pyrite Mineralization in Microbial Mats from the Mid-Proterozoic Newland Formation, Belt Supergroup, Montana, U.S.A.,” Sedimentary Geology, Vol. 64, No. 1-3, 1989, pp. 79-90.
http://dx.doi.org/10.1016/0037-0738(89)90085-7

[4]   J. Schieber, “Sedimentary Pyrite: A Window into the Microbial Past,” Geology, Vol. 30, No. 6, 2002, pp. 531-534. http://dx.doi.org/10.1130/0091-7613(2002)030<0531:SPAWIT>2.0.CO;2

[5]   J. Schieber, “The Role of an Organic Slime Matrix in the Formation of Pyritized Burrows Trails and Pyrite Concretions,” Palaios, Vol. 17, No. 1, 2002, pp. 104-109.
http://dx.doi.org/10.1669/0883-1351(2002)017<0104:TROAOS>2.0.CO;2

[6]   J. Schieber, “Simple Gifts and Hidden Treasures—Implications of Finding Bioturbation and Erosion Surfaces in Black Shales,” The Sedimentary Record, Vol. 1, 2003, pp. 4-8.

[7]   J. Schieber, “Granular Microbial Habits Built from Iron Sulfides: Alternative Microbial Lifestyles?” Lunar and Planetary Sciences XXXVI, 2005.

[8]   J. Schieber and L. Riciputi, “Pyrite and Marcasite Coated Grains in the Ordovician Winnipeg Formation, Canada: An Intertwined Record of Surface Conditions, Stratigraphic Condensation, Geochemical ‘Reworking’ and Microbial Activity,” Journal of Sedimentary Research, Vol. 75, No. 5, 2005, pp. 907-920.
http://dx.doi.org/10.2110/jsr.2005.070

[9]   R. L. Folk, “Nannobacteria and the Formation of Framboidal Pyrite: Textural Evidence,” Journal of Earth System Science, Vol. 114, No. 3, 2005, pp. 369-374.
http://dx.doi.org/10.1007/BF02702955

[10]   A. Blanco, F. J. Zavala, J. Hernandez-Avila, F. Maurrasse, F. Duque-Botero and M. Ramírez-Cardona, “Microbial Preservation in Sedimentary Pyrite from Cretaceous Organic Matter-Rich Carbonate Mudstone: A Preliminary Report,” Lunar and Planetary Science Conference, 2010.

[11]   A. Blanco, S. A. Angeles-Trigueros, C. Castaneda-Posadas and S. P. Ambrocio-Cruz, “Fossilized Pollen Grains in Sedimentary Pyrite and Its Significance for Life Prospection in Mars,” Lunar and Planetary Science Conference, 2013.

[12]   I. Kaczmarska and J. M. Ehrman, “Pyritized Diatoms in the Sediments of the Distal End of the Bengal Fan,” Proceedings of the Ocean Drilling Project Program, Scientific Results, Vol. 116, 1990, pp. 243-247.

[13]   J. Schieber and G. Baird, “On the Origin and Significance of Pyrite Spheres in Devonian Black Shales of North America,” Journal of Sedimentary Research, Vol. 71, No. 1, 2001, pp. 155-166.
http://dx.doi.org/10.1306/051600710155

[14]   C. Kamerick, “Stom@ocysts & Co.-web Application to Bring the Research Community Together via the Internet,” Nova Hedwigia, Beiheft, 2010, pp. 311-323.

[15]   K. E. Duff, B. A. Zeeb, J. P. Smol and J. R. Glew, “Atlas of Chrysophycean Cysts (Developments in Hydrobiology),” Vol. 1, Kluwer Academic Publishers, Dordrecht, 1994.

[16]   C. D. Sandgren and H. J. Carney, “A Flora of Fossil Chrysophycean Cysts from the Recent Sediments of Frains Lake, Michigan, U.S.A.,” Vol. 38, Nova Hedwigia, 1983, pp. 129-163.

[17]   P. A. Siver, “The Stomatocyst of Mallomonas v. Muskokana (Chrysophycea),” Journal of Paleolimnology, Vol. 5, No. 1, 1991, pp. 11-17.
http://dx.doi.org/10.1007/BF00226556

[18]   V. Rull, “Palaeocological Significance of Chryshophycean Stomatocysts: A Statistical Approach,” Hydrobiologia, Vol. 220, No. 2, 1991, pp. 161-165.
http://dx.doi.org/10.1007/BF00006549

[19]   V. Rull and T. Vegas-Vilarrúbia, “Chrysophycean Stomatocyst in a Caribbean Mangrove,” Hydrobiologia, Vol. 428, No. 1, 2000, pp. 145-150.
http://dx.doi.org/10.1023/A:1003967432654

[20]   J. Piatek and M. Piatek, “Chrysophyte Stomatocyst of the Sulphuric Salt Marsh in the Owczary Reserve (Central Poland),” Polish Botanical Journal, Vol. 50, No. 1, 2005, pp. 97-106.

[21]   G. Deflandre, “Seconde Note sur les Archaeomonadaceés,” Bulletin de la Société Botanique de France, Vol. 80, 1933, pp. 79-90.

[22]   K. Perch-Nielsen, “Late Cretaceous to Pleistocene Archaeomonads, Ebridians, Endoskeletal Dinoflagellates and Other Siliceous Microfossils from the Subantarctic Southwest Pacific, DSDP Leg 29,” Initial Reports of the Deep Sea Drilling Project, Vol. 29, 1975, pp. 677-722.

[23]   D. M. Harwood and R. Gersonde, “Lower Cretaceous Diatoms from Odp Leg 113 Site 693 (Weddell Sea). Part 2: Resting Spores, Chrysophycean Cysts, An Endoskeletal Dinoflagellate and Notes on the Origin Of Diatoms,” Proceedings of the Ocean Drilling Program. Scientific Results, Vol. 113, 1990, pp. 403-425.

[24]   K. Perch-Nielsen, “Eocene to Pliocene Archaeomonads, Ebridians and Endoskeletal Dinoflagellates from the Norwegian Sea, DSDP Leg 38,” Initial Reports of the Deep Sea Drilling Project, Vol. 38, 1975, pp. 147-175

[25]   K. Perch-Nielsen, “Tertiaty Silicoflagelates and other Siliceous Microfossils from the Westerm South Atlantic Deep Sea Drilling Project. Leg 39,” Initial Reports of the Deep Sea Drilling Project, Vol. 39, 1977, pp. 863-867.
http://dx.doi.org/10.2973/dsdp.proc.39.135.1977

[26]   J. P. Jendrzejewski and G. F. Hart, “Distribution of Siliceous Microfossils in Superficial Bottom Sediments of the Gulf of Mexico,” Palynology, Vol. 2, No. 1, 1978, pp. 159-166. http://dx.doi.org/10.1080/01916122.1978.9989170

[27]   L. Sanchez, R. Rico-M, M. R. Fernandez and J. Canetas, “Estomatoquistes Fósiles de Crisofíceas de El Arenal Jalisco, México,” Revista Chapingo Serie Ciencias Forestales y del Ambiente, Vol. 6, No. 2, 2000, pp. 93-102.

[28]   S. A. Angeles-Trigueros, A. Blanco-Pinón, J. Hernandez-Avila and F. J. Zavala-Díaz de la Serna, “Bioformas Microscópicas en Pirita Sedimentaria y sus Implicaciones Astrobiológicas,” Memorias de la VIII Reunión de la Sociedad Mexicana de Astrobiología, Cuernavaca, 4th August, 2012, pp. 59-62.

[29]   A. Blanco-Pinón, F. J.-M. R. Maurrasse and F. Duque-Botero, “Cyanobacteria/Foraminifera Association from Anoxic/Dysoxic Beds of the Agua Nueva Formation (Upper Cretaceous—Cenomanian/Turonian) at Xilitla, San Luis Potosi, Central Mexico,” Eos Transactions AGU, Vol. 89, No. 23, 2008, pp. 24A-04.

[30]   A. Blanco, F. Maurrasse, F. Duque-Botero and A. Delgado-Angeles, “Anoxic-Dysoxic-Oxic Conditions in the Cenomanian Agua Nueva Formation (Upper Cretaceous) in Central Mexico and Their Relation to Oceanic Anoxic Event 2 (OAE 2),” Geological Society of America, Abstracts with Programs, Vol. 43, No. 5, 2011, p. 421.

[31]   A., Blanco-Pinón, S. A. Angeles-Trigueros, J. Hernandez-Avila and F. J. Zavala-Díaz de la Serna, “SEM Imaging of Biostructures in Upper Cretaceous Sedimentary Pyrite: an Astrobiological Approach,” Geological Society of America, Abstracts with Programs, Vol. 44, No. 7, 2012, p.75.

[32]   A. Blanco-Pinón, F. J. Zavala-Díaz de la Serna, J. Hernandez-Avila, F. Maurrasse and F. Duque-Botero, “Microscopic Bioforms in Pyritic Layers from the Cenomanian/Turonian (Upper Cretaceous) Agua Nueva Formation, Xilitla, Central Mexico: A Preliminary Description,” Geological Society of America, Abstracts with Programs, Vol. 41, No. 7, 2009, p. 82.

[33]   N. F. Sohl, E. Martínez, P. Salmerón-Urena and F. Soto-Jaramillo, “Upper Cretaceous,” In: A. Salvador Ed., The Gulf of Mexico Basin, The Geological Society of North America, Austin, 1991, pp. 205-242

[34]   M. Suter, “Carta Geológica de México. Hoja Tamazunchale 14Q-e(5) Escala 1:1000.000,” Universidad Nacional Autónoma de México, Instituto de Geología, México, D.F., 1991.

[35]   F. J.-M. R. Maurasse, F. Duque-Botero and A. Blanco-Pinón, “Oceanic Anoxic Event 2 (OAE-2) in Cretaceous Northeastern Mexico and the Effects of Paleophysiography at the Sediment Record,” In: M. A. Lamolda, E. Díaz, G. Jiménez-Moreno, F. J.-M. R. Maurrasse, G. Meléndez, C. R. C. Paul and F. J. Rodríguez-Tovar, Eds., Geoevents, Geological Heritage and the Role of the IGCP, Caravaca de la Cruz, 2010, pp. 54-62.

[36]   R. A. Berner, “Sedimentary Pyrite Formation: An Update,” Geochimica et Cosmochimica Acta, Vol. 48, No. 4, 1984, pp. 605-615.
http://dx.doi.org/10.1016/0016-7037(84)90089-9

[37]   T. Mrozińska, M. Olech and A. Massalski, “Cyst of the Chrysophyceae from King George Island (South Shetland Islands, Antartica),” Polish Polar Research, Vol. 19, No. 3/4, 1998, pp. 205-210.

[38]   S. T. Grimes, K. L. Davies, I. B. Butler, F. Brock, D. Edwards, D. Rickard, D. E. G. Briggs and R. K. Parkes, “Fossil Plants from the Eocene London Clay: the Use of Pyrite Textures to Determine the Mechanism of Pyritization,” Journal of the Geological Society, Vol. 159, 2002, pp. 493-501. http://dx.doi.org/10.1144/0016-764901-176

[39]   E. Jag-Yazikova, W. Krawczyński and M. Rokocińsky, “Molluscs from the Early Frasnian Goniatite Level at Kostomloty in the Holy Cross Mountains, Poland,” Acta Palaeontologica Polonica, Vol. 51, No. 4, 2006, pp. 707-718.

[40]   G. Southam, R. Donald, A. Rostad and C. Brock, “Pyrite Discs in Coal: Evidence for Fossilized Bacterial Colonies,” Geology, Vol. 29, No. 1, 2001, pp. 47-50.
http://dx.doi.org/10.1130/0091-7613(2001)029<0047:PDICEF>2.0.CO;2

 
 
Top