GSC  Vol.4 No.1 , February 2014
Stabilization of Silica Gel against Hydrolysis by Doping with Fˉ or Zr(IV)
ABSTRACT

Silica gel (SG) was synthesized via acidification of sodium silicate solution then doped with Fˉ or Zr(IV) in molar ratios of F/Si 3/100, and Zr/Si 0.75/100 and 3.75/100 and sintered at 500°C, 800°C and 1000°C. The samples were investigated by X-ray diffractometry, infrared absorption and Raman spectra, surface area measurement, and inductively coupled plasma-optical emission spectrometry-monitored silica hydrolysis. All samples are mesoporous with BET surface areas 181.5 - 523.9 m2·gˉ1. The surface area of the silica samples decreases as the sintering temperature increases. The hydrolysis process of silica decreases as the sintering temperature increases and as the surface area decreases. The pH and the type of buffer solution affect the hydrolysis of silica samples due to a SN2 reaction mechanism favored in basic media using ammonia buffer. Zr(IV) increases the stability of silica samples against the hydrolysis as confirmed by the structural investigation, surface area and silica hydrolysis. Fˉ observably decreases the silica hydrolysis process when presenting on the surface of SG.


Cite this paper
K. S. Abou-El-Sherbini, P. G. Weidler, D. Schiel, M. H. A. Amr, H. Niemann, S. El-Dafrawy and W. H. Höll, "Stabilization of Silica Gel against Hydrolysis by Doping with Fˉ or Zr(IV)," Green and Sustainable Chemistry, Vol. 4 No. 1, 2014, pp. 24-32. doi: 10.4236/gsc.2014.41005.
References
[1]   R. K. Iler, “The Chemistry of Silica,” Wiley, New York, 1979.

[2]   E. F. Vansant, P. Van der Voort and K. C. Vrancken, “Characterisation and Chemical Modification of the Silica Surface,” Elsevier, Amsterdam, 1995.

[3]   J. Andersson, S. Areva, B. Spliethoff and M. Lindén, “Sol-Gel Synthesis of a Multifunctional, Hierarchically Porous Silica/Apatite Composite,” Biomaterials, Vol. 26, No. 34, 2005, pp. 6827-6835.
http://dx.doi.org/10.1016/j.biomaterials.2005.05.002

[4]   H. J. Erli, R. Marx, O. Paar, F. U. Niethard, M. Weber and D. C. Wirtz, “Surface Pretreatments for Medical Application of Adhesion,” BioMedical Engineering OnLine, Vol. 2, 2003, p. 15.

[5]   E. M. Claesson, N. C. Mehendale, R. J. M. K. Gebbink, G. van Kotenb and A. P. Philipse, “Magnetic Silica Colloids for Catalysis,” Journal of Magnetism and Magnetic Materials, Vol. 311, 2007, pp. 41-45.
http://dx.doi.org/10.1016/j.jmmm.2006.11.166

[6]   S. Antebi, P. Arya, L. E. Manzer and H. Alper, “Carbonylation Reactions of Iodoarenes with PAMAM Dendrimer-Palladium Catalysts Immobilized on Silica,” The Journal of Organic Chemistry, Vol. 67, No. 19, 2002, pp. 6623-6631. http://dx.doi.org/10.1021/jo020271n

[7]   S. C. Bourque, F. Maltais, W.-J. Xiao, O. Tardif, H. Alper, P. Arya and L. E. Manzer, “Hydroformylation Reactions with Rhodium-Complexed Dendrimers on Silica,” Journal of the American Chemical Society, Vol. 121, No. 13, 1999, pp. 3035-3038.
http://dx.doi.org/10.1021/ja983764b

[8]   J. Kurczewska and G. Schroeder, “Modified Silica Surface by Phenylboronic Acid Derivatives as Effective Sugar Sensor,” Central European Journal of Chemistry, Vol. 7, No. 4, 2009, pp. 697-701.
http://dx.doi.org/10.2478/s11532-009-0080-5

[9]   M. R. J. Rui, R. L. Phabyanno, G. C. Alessandra, S. R. Adriana, C. De Abreu Fabiane, O. F. G. Marilia and T. K. Lauro, “An Amperometric Sensor Based on Hemin Adsorbed on Silica Gel Modified with Titanium Oxide for Electrocatalytic Reduction and Quantification of Artemisinin,” Talanta, Vol. 77, No. 2, 2008, pp. 909-914.

[10]   J. D. S. Newman, J. M. Roberts and G. J. Blanchard, “Optical Organophosphate Sensor Based upon Gold Nanoparticle Functionalized Fumed Silica Gel,” Analytical Chemistry, Vol. 79, No. 9, 2007, pp. 3448-3454.
http://dx.doi.org/10.1021/ac062165h

[11]   C.-Y. Yen, C.-H. Lee, Y.-F. Lin, H.-L. Lin, Y.-H. Hsiao, S.-H. Liao, C.-Y. Chuang and C.-C. M. Ma, “Sol-Gel Derived Sulfonated-Silica/Nafion® Composite Membrane for Direct Methanol Fuel Cell,” Journal of Power Sources, Vol. 173, No. 1, 2007, pp. 36-44.
http://dx.doi.org/10.1016/j.jpowsour.2007.08.017

[12]   Y.-F. Lin, C.-Y. Yen, C.-C. M. Ma, S.-H. Liao, C.-H. Lee, Y.-H. Hsiao and H.-P. Lin, “High Proton-Conducting Nafion®/–SO3H Functionalized Mesoporous Silica Composite Membranes,” Journal of Power Sources, Vol. 171, No. 2, 2007, pp. 388-395.
http://dx.doi.org/10.1016/j.jpowsour.2007.06.049

[13]   D. Gomes, I. Buder and S. P. Nunes, “Sulfonated Silica-Based Electrolyte Nanocomposite Membranes,” Journal of Polymer Science Part B: Polymer Physics, Vol. 44, No. 16, 2006, pp. 2278-2298.
http://dx.doi.org/10.1002/polb.20868

[14]   Kh. Abou-El-Sherbini, M. Hassanien and I. Kenawy, “Selective Separation and Preconcentration of Total Tin Using Quercetin as Chelating Agent,” Separation Science and Technology, Vol. 42, No. 15, 2007, pp. 3447-3463.
http://dx.doi.org/10.1080/01496390701653911

[15]   M. Hassanien and Kh. Abou-El-Sherbini, “Synthesis and Characterisation of Morin-Functionalised Silica Gel for the Enrichment of Some Precious Metal Ions,” Talanta, Vol. 68, No. 5, 2006, pp. 1550-1559.
http://dx.doi.org/10.1016/j.talanta.2005.08.016

[16]   G. Mostafa, M. Hassanien, Kh. Abou-El-Sherbini and V. Gorlitz, “Controlled-pore Silica Glass Modified with N- Propylsalicylaldimine for the Separation and Preconcentration of Trace Al(III), Ag(I) and Hg(II) in Water Samples,” Analytical Sciences, Vol. 19, No. 8, 2003, pp. 1151-1156.
http://dx.doi.org/10.2116/analsci.19.1151

[17]   P. K. Jal, S. Patel and B. K. Mishra, “Chemical Modification of Silica Surface by Immobilization of Functional Groups for Extractive Concentration of Metal Ions,” Talanta, Vol. 62, No. 5, 2004, pp. 1005-1028.
http://dx.doi.org/10.1016/j.talanta.2003.10.028

[18]   F. Barbette, F. Rascalou, H. Chollet, J. L. Babouhot, F. Denat and R. Guilard, “Extraction of Uranyl Ions from Aqueous Solutions Using Silica-Gel-Bound Macrocycles for Alpha Contaminated Waste Water Treatment,” Analytica Chimica Acta, Vol. 502, No. 2, 2004, pp. 179-187.
http://dx.doi.org/10.1016/j.aca.2003.09.065

[19]   M. Etienne and A. Walcarius, “Analytical Investigation of the Chemical Reactivity and Stability of Aminopropyl-Grafted Silica in Aqueous Medium,” Talanta, Vol. 59, No. 6, 2003, pp. 1173-1185.
http://dx.doi.org/10.1016/S0039-9140(03)00024-9

[20]   Kh. Abou-El-Sherbini, C. Pape, O. Rienitz, D. Schiel, R. Stosch, P. G. Weidler, W. H. Holl, “Stabilization of n-Aminopropyl Silica Gel against Hydrolysis by Blocking Silanol Groups with TiO2 or ZrO2,” Journal of Sol-Gel Science and Technology, Vol. 53, No. 3, 2010, pp. 587-597. http://dx.doi.org/10.1007/s10971-009-2136-6

[21]   Kh. Abou-El-Sherbini, “Modification of Aminopropyl Silica Gel with Some Chelating Agents and Their Effect on Its Stability against Hydrolysis,” Journal of Sol-Gel Science and Technology, Vol. 51, No. 2, 2009, pp. 228-237. http://dx.doi.org/10.1007/s10971-009-1975-5

[22]   Kh. Abou-El-Sherbini, D. Schiel, R. Stosch, P. G. Weidler and W. H. Holl, “Stabilization of Quercetin— Functionalized Silica Gel against Hydrolysis by Blocking Silanol Groups with TiO2 or ZrO2 and Its Application for the Removal of Hg(II),” Journal of Sol-Gel Science and Technology, Vol. 57, No. 1, 2010, pp. 57-67.

[23]   R. Dron, F. Brivot and T. Chaussadent, “Mechanism of the Alkali-Silica Reactions,” 10th International Conference on the Chemistry of Cement, Gothenburg, Vol. 4, 1997, 4iv074-8p.

[24]   B. V. Zhmud and J. Sonnefeld, “Aminopolysiloxane Gels: Production and Properties,” Journal of Non-Crystalline Solids, Vol. 195, No. 1-2, 1996, pp. 16-27.
http://dx.doi.org/10.1016/0022-3093(95)00497-1

[25]   A. A. Golub, A. I. Zubenko and B. V. Zhmud, “γ-APTES Modified Silica Gels: The Structure of the Surface Layer,” Journal of Colloid and Interface Science, Vol. 179, No. 2, 1996, pp. 482-487.
http://dx.doi.org/10.1006/jcis.1996.0241

[26]   B. V. Zhmud and A. B. Pechenyi, “Acid-Base Properties and Electrokinetic Behavior of Amine-Containing Organopolysiloxane Matrices,” Journal of Colloid and Interface Science, Vol. 173, No. 1, 1995, pp. 71-78.
http://dx.doi.org/10.1006/jcis.1995.1298

[27]   A. Rimola, D. Costa, M. Sodupe, J.-F. Lambert and P. Ugliengo, “Silica Surface Features and Their Role in the Adsorption of Biomolecules: Computational Modeling and Experiments,” Chemical Reviews, Vol. 113, No. 6, 2013, pp. 4216-4313.
http://dx.doi.org/10.1021/cr3003054

[28]   B. C. Dave and E. A. J. Ottosson, “Sol-Gel Encapsulation of Molecules to Generate Functional Optical Materials: A Molecular Programming Approach,” Journal of Sol-Gel Science and Technology, Vol. 31, No. 1-3, 2004, 303-307.
http://dx.doi.org/10.1023/B:JSST.0000048008.73055.22

[29]   Y. Y Han and D. Zhang, “Ordered Mesoporous Silica Materials with Complicated Structures,” Current Opinion in Chemical Engineering, Vol. 1, No. 2, 2012, pp. 129-137.
http://dx.doi.org/10.1016/j.coche.2011.11.001

[30]   S. Brunauer, P. H. Emmett and E. Teller, “Adsorption of Gases in Multimolecular Layers,” Journal of the American Chemistry Society, Vol. 60, No. 2, 1938, pp. 309-319. http://dx.doi.org/10.1021/ja01269a023

[31]   M. Thommes, “Chapter 11: Physical Adsorption Characterization of Ordered and Amorphous Mesoporous Materials,” In: G. Q. Lu and X. S. Zhao, Eds., Nanoporous Materials: Science and Engineering, Imperial College Press, London, 2004, pp. 317-364.

[32]   J. Ryan, M. Elimelech, J. Baeseman and R. Magelky, “Silica-Coated Titania and Zirconia Colloids for Subsurface Transport Field Experiments,” Environmental Science & Technology, Vol. 34, No. 10, 2000, pp. 2000-2005. http://dx.doi.org/10.1021/es9909531

[33]   G. F. Cerofolini, “A Study of the Ionic Route for Hydrogen Terminations Resulting after SiO2 Etching by Concentrated Aqueous Solutions of HF,” Applied Surface Science, Vol. 133, No. 1-2, 1998, pp. 108-114.
http://dx.doi.org/10.1016/S0169-4332(98)00182-2

[34]   I. S. Chuang and G. E. Maciel, “A Detailed Model of Local Structure and Silanol Hydrogen Bonding of Silica Gel Surfaces,” The Journal of Physical Chemistry B, Vol. 101, No. 16, 1997, pp. 3052-3064.
http://dx.doi.org/10.1021/jp9629046

[35]   B. A. Morrow, I. A. Cody and L. S. M. Lee, “Infrared Studies of Reactions on Oxide Surfaces. 7. Mechanism of the Adsorption of Water and Ammonia on Dehydroxylated Silica,” The Journal of Physical Chemistry, Vol. 80, No. 25, 1976, pp. 2761-2767.
http://dx.doi.org/10.1021/j100566a009

[36]   S. W. Lee and R. A. Condrate, “The Infrared and Raman Spectra of ZrO2-SiO2 Glasses Prepared by a Sol-Gel Process,” Journal of Materials Science, Vol. 23, No. 8, 1988, pp. 2951-2959.
http://dx.doi.org/10.1007/BF00547474

[37]   R. Lorenzi, S. Brovelli, F. Meinardi, A. Lauria, N. Chiodini and A. Paleari, “Role of Sol-Gel Networking and Fluorine Doping in the Silica Urbach Energy,” Journal of Non-Crystalline Solids, Vol. 357, No. 8-9, 2011, pp. 1838-1841.
http://dx.doi.org/10.1016/j.jnoncrysol.2010.12.051

[38]   F. L. Galeener, “Band Limits and the Vibrational Spectra of Tetrahedral Glasses,” Physical Review B, Vol. 19, No. 8, 1979, pp. 4292-4297.
http://dx.doi.org/10.1103/PhysRevB.19.4292

[39]   F. L. Galeener, “Planar Rings in Glasses,” Solid State Communications, Vol. 44, No. 7, 1982, pp. 1037-1040.
http://dx.doi.org/10.1016/0038-1098(82)90329-5

[40]   A. Pasquarello and R. Car, “Identification of Raman Defect Lines as Signatures of Ring Structures in Vitreous Silica,” Physical Review Letters, Vol. 80, No. 23, 1998, pp. 5145-5147.
http://dx.doi.org/10.1103/PhysRevLett.80.5145

[41]   Y. Sohrin, S. Iwamoto, S. Akiyama, T. Fujita, T. Kugii, H. Obata, E. Nakayama, S. Goda, Y. Fujishima, H. Hasegawa, K. Ueda and M. Matsui, “Determination of Trace Elements in Seawater by Fluorinated Metal Alkoxide Glass-Immobilized 8-Hydroxyquinoline Concentration and High-Resolution Inductively Coupled Plasma Mass Spectrometry Detection,” Analytica Chimica Acta, Vol. 363, No. 11, 1998, pp. 11-19.
http://dx.doi.org/10.1016/S0003-2670(98)00074-9

[42]   G. F. Cerofolini and N. Re, In: E. Garfunkel, E. Gusev and Y. A. Vul’, Fundamental Aspects of Ultra Thin Dielectric on Si-Based Devices, Kluwer, Dordrecht, 1998.

 
 
Top