OJF  Vol.4 No.2 , February 2014
Installation of a Riparian Forest by Means of Soil Bio Engineering Techniques—Monitoring Results from a River Restoration Work in Southern Brazil
Abstract: Soil bioengineering has been applied more and more in different regions of Brazil in recent years. The study in hand presents the installation of “new” riparian forest based on soil bioengineering techniques. This riverbank restoration work was implemented in the year 2010 and two onsite vegetation surveys, one shortly after the construction, and one in 2013. Besides that, the structures of reinforcement work, and its effectiveness were evaluated. By means of the vegetation survey, the applied species were examined for their ability to establish the riverbank in an environmentally sustainable way. Most notably, the species Calliandra brevipes Benth. (Fabaceae, Mimosoideae), Phyllanthus sellowianus Müller Arg. (Euphorbiaceae), Salix humboldtiana Willd. (Salicaceae), Bauhinia forficate Link (Leguminosae), Inga marginata Willd. (Mimosoideae) and Ateleia glazioveana Baill. (Leguminosae, Papilionoideae) showed a good growth development. The proportion of spontaneous vegetation increased significantly, with Pennisetum purpureum Schumach. becoming a dominating species. Resulting from that, the intervention can be assessed as functional and safe, but the strong increase of spontaneous vegetation is undesirable due to less flood resistance. The vegetated riprap could be the best to meet the expectations of the construction elements. Partly, the anchored willows showed as well a good growth development whereas the species used for the hedge brush layer could not develop as expected in large parts of the construction.  
Cite this paper: Rauch, H. , Sutili, F. & Hörbinger, S. (2014). Installation of a Riparian Forest by Means of Soil Bio Engineering Techniques—Monitoring Results from a River Restoration Work in Southern Brazil. Open Journal of Forestry, 4, 161-169. doi: 10.4236/ojf.2014.42022.

[1]   Acharya, M. S., & Rauch, H. P. (2008). Pullout test of willows to estimate the mechanical effects of roots [Konferenz]. 2nd International Conference on Ground Bioand Eco-Engineering—The Use of Vegetation to Improve Slope Stability, Beijing, 14-18 July 2008.

[2]   Altreiter, W., & Plunger, K. (2004). Ingenieurbiologische Maβnahmen am Rio Guardamor in Südbrasilien. Wien: Diplomarbeitan der Universitätfür Bodenkultur,.

[3]   Raymond, P. (2012). AMEC environment & infrastructure design guidelines for erosion and flood control project for streambank and riparian stability restoration [Bericht]. Calgary: City of Calgary.

[4]   Bressan, D. A., Durlo, M. A., & Sutili, F. J. (2004). Potencialbiotécnico do sarandibranco (Phyllanthussellowianus Müll. Arg.) e vime (Salix viminalis L.) para revegetação de margens de cursos de água. Ciência Florestal, Santa Maria, 14, 13-20.

[5]   Comitê Pardo (2012). A bacia hidrográfica do rio pardo.

[6]   Denardi, L. (2007). Anatomia e Flexibilidade do Caule de Quatro Espécies Lenhosas Para o Manejo Biotécnico de Cursos de água. 2007. 111 f. Tese (DoutoradoemManejoFlorestal)—Universidade Federal de Santa Maria, Santa Maria.

[7]   Durlo, M. A., Florineth, F., & Sutili, F. (2006). Endbericht KEF Projekt 121-Ingenieurbiologische Uferschutzmaβnahmen an Bächen und Flüssen in Südbrasilien. Wien: Kommission für Entwicklungsfragen &OUMLsterreichische Akademie der Wissenschaften.

[8]   Durlo, M. A., & Sutili, F. J. (2005). Bioengenharia: Manejobiotécnico de cursos de água. Porto Alegre: EST Edições, 198.

[9]   Florineth F. (2002). Stabilisation of land slides using soil bioengineering methods. Erosion control (pp. 32-38). Santa Barbara: IECA, Official Journal of the International Erosion Control Association.

[10]   Gerstgasser, C. (2000). Ingenieurbiologische Bauweisen an Fliessgewässern. Grundlagen zum Bau, Belastbarkeit und Wirkungsweisen. &OUMLsterreichischer Kunst und Kulturverlag, Wien.

[11]   Heuser, S. E. (2013). FEE—Fundação de Economia e Estatística.

[12]   Holanda, F. S. R., & Pinheiro da Rocha, I. (2010). Streambank Soil Bioengineering Approach to Erosion Control. InTechopen. Universidade Federal de Sergipe, Brazil.

[13]   Hörbinger (2013). A pull out test of Phyllanthussellowianus and Sebastianiaschottiana and development of soil bioengineering constructions in Southern Brazil. Master Thesis, Vienna: University of Natural Resources and Life Sciences.

[14]   Howell, J. (1999). Roadside bio-engineering. Kathmandu: His Majesty’s Government of Nepal.

[15]   Lammeranner, W., Laaha, G., & Rauch, H. P. (2005). Implementation and monitoring of soil bioengineering measures at a landslide in the Middle Mountains of Nepal. Plant and Soil, 278, 159-170.

[16]   Li, M.-H., & Eddleman, K. E. (2002). Biotechnical engineering as an alternative to traditional engineering methods. A biotechnical streambank stabilization design approach. Landscape and Urban Planning, 60, 225-242.

[17]   Monteiro, J. S. (2009). Influência do angulo de plantionapropagaçãovegetativa de espéciesutilizadasemengenharia natural. 2009. 111f. Dissertação (mestradoem Manejo Florestal). Santa Maria: Universidade Federal de Santa Maria.

[18]   Moreno, J. A. (1961). Clima do Rio Grande do Sul. Secretaria da agricultura, Porto Alegre, 42.

[19]   Petrone, A., & Preti, F. (2010). Soil bioengineering for risk mitigation and environmental restoration in a humid tropical area. Hydrological Earth System Sciences, 14, 239-250.

[20]   Petrone, A., & Preti, F. (2008). Suitability of soil bioengineering techniques in Central America: A case study in Nicaragua. Hydrological Earth System Sciences, 12, 1241-1248.

[21]   Rauch, H. P., & Sutili, F. (2009). Project 159: Plants for civil engineering structures, final report. Vienna: Comission for Development Studies attheOeAD—GmbH.

[22]   Schiechtl, H. M. (1980). Bioengineering for land reclamation and conservation [Buch]. Edmonton: University of Alberta.

[23]   Simon, A., & Collison, J. C. A. (2002). Quantifiying the mechanical and hydrological effects of riparian vegetation on stream banks stability. Earth Surf Process Landforms, 27, 527-546.

[24]   Sutili, F. J. et al. (2012) Flexuralbehaviour of selectedriparian plants understaticload. Vienna: Ecological Engineering.

[25]   Vargas, C. O. (2007). Característicasbiotécnicas de Phyllanthussellowianus Müll. Arg., Salix x rubensScharank e Sebastianiaschottiana (Müll. Arg.) Müll. Arg. 2007. 84f. Dissertação (Mestradoem Manejo Florestal). Santa Maria: Universidade Federal de Santa Maria.

[26]   Zeh, H. (2007). Soil bioengineering. Construction type manual [Buch]. Zürich: vdfHochschulverlag AG, ETH Zürich, 448.