IJG  Vol.5 No.2 , February 2014
Spatial Distribution of Runoff Depth from a Watershed Located in a Cuesta Relief Area of São Paulo State, Brazil
ABSTRACT

This study was undertaken in a 1566 ha drainage basin situated in an area with cuesta relief in the state of Sao Paulo, Brazil. The objectives were: 1) to map the maximum potential soil water retention capacity, and 2) simulate the depth of surface runoff in each geographical position of the area based on a typical rainfall event. The database required for the development of this research was generated in the environment of the geographical information system ArcInfo v.10.1. Undeformed soil samples were collected at 69 points. The ordinary kriging method was used in the interpolation of the values of soil density and maximum potential soil water retention capacity. The spherical model allowed for better adjustment of the semivariograms corresponding to the two soil attributes for the depth of 0 to 20 cm, while the Gaussian model enabled a better fit of the spatial behavior of the two variables for the depth of 20 to 40 cm. The simulation of the spatial distribution revealed a gradual increase in the depth of surface runoff for the rainfall event taken as example (25 mm) from the reverse to the peripheral depression of the cuesta (from west to east). There is a positive aspect observed in the gradient, since the sites of highest declivity, especially those at the front of the cuesta, are closer to the western boundary of the watershed where the lowest depths of runoff occur. This behavior, in conjunction with certain values of erodibility and depending on the land use and cover, can help mitigate the soil erosion processes in these areas.


Cite this paper
Jorge, L. , Moraes, M. and Lima, S. (2014) Spatial Distribution of Runoff Depth from a Watershed Located in a Cuesta Relief Area of São Paulo State, Brazil. International Journal of Geosciences, 5, 137-145. doi: 10.4236/ijg.2014.52015.
References
[1]   D. Gómez-Orea, “Ordenación Territorial,” Mundi-Prensa, Madrid, 2002.

[2]   L. A. B. Jorge, “Soil Erosion Fragility Assessment Using an Impact Model and Geographic Information System,” Scientia Agricola, Vol. 66, No. 5, 2009, pp. 658-666.
http://dx.doi.org/10.1590/S0103-90162009000500011

[3]   W. H. Wischmeier and D. D. Smith, “Predicting Rainfall Erosion Losses from Cropland East of the Rocky Mountains,” USDA/ARS, Washington, 1965.

[4]   W. H. Wischmeier and D. D. Smith, “Predicting Rainfall Erosion Losses: A Guide to Conservation Planning with the Universal Soil Loss Equation (USLE),” USDA, Washington, 1978.

[5]   K. G. Renard, G. R. Foster, D. C. Yoder and D. K. Mc-Cool, “RUSLE Revisited: Status, Question, Answers, and the Future,” Journal of Soil and Water Conservation, Vol. 49, 1994, pp. 213-220.

[6]   D. Yoder and J. Lown, “The Future of RUSLE: Inside the New Revised Universal Soil Loss Equation,” Journal of Soil and Water Conservation, Vol. 50, 1995, pp. 484-489.

[7]   J. R. Williams, “Sediment Routing for Agricultural Watersheds,” Water Resource Bulletin, Vol. 11, No. 5, 1975, pp. 965-974.
http://dx.doi.org/10.1111/j.1752-1688.1975.tb01817.x

[8]   A. M. Melesse and S. F. Shih, “Spatially Distributed Storm Runoff Depth Estimation Using Landsat Images and GIS,” Computers and Electronics in Agriculture, Vol. 37, No. 1-3, 2002, pp. 173-183.
http://dx.doi.org/10.1016/S0168-1699(02)00111-4

[9]   X. Zhan and M. Huang, “ArcCN-Runoff: An ArcGIS Tool for Generating Curve Number and Runoff Maps,” Environment Modelling and Software, Vol. 19, No. 10, 2004, pp. 875-879.
http://dx.doi.org/10.1016/j.envsoft.2004.03.001

[10]   R. Vijay, A. Pareek and A. Gupta, “Estimation of Rainfall-Runoff Using Curve Number: A GIS Based Development of Sathanur Reservoir Catchment,” Journal of Environmental Science and Engineering, Vol. 48, No. 4, 2006, pp. 267-270.

[11]   Y. Zhang, J. Degroote, C. Wolter and R. Sugumaran, “Integration of Modified Universal Soil Loss Equation (MUSLE) into a GIS Framework to Assess Soil Erosion Risk,” Land Degradation & Development, Vol. 20, No. 1, 2009, pp. 84-91. http://dx.doi.org/10.1002/ldr.893

[12]   M. Ebrahimian, A. A. Nuruddin, M. A. B. M. Soom and A. M. Sood, “Application of NRCS—Curve number method for runoff estimation in a mountainous watershed,” Caspian Journal of Environmental Sciences, Vol. 10, No. 1, 2012, pp. 103-114.

[13]   G. B. Schultz, C. A. C. Siefert and I. Santos, “Avaliacao do ArcMUSLE para Estimativa da Producao de Sedimentos na Bacia Hidrográfica do Alto Rio Negro, Regiao Sul Brasileira,” Boletim de Geografia, Vol. 31, No. 2, 2013, pp. 131-141.
http://dx.doi.org/10.4025/bolgeogr.v31i2.13367

[14]   C. A. Cambardella, T. B. Moorman, J. M. Novak, T. B. Parkin, D. L. Karlen, R. F. Turco and A. E. Konopka, “Field-Scale Variability of Soil Properties in Central Iowa Soils,” Soil Science Society of America Journal, Vol. 58, No. 2, 1994, pp. 1501-1511.
http://dx.doi.org/10.2136/sssaj1994.03615995005800050033x

[15]   E. H. Isaaks and R. M. Srivastava, “An Introduction to Applied Geoestatistics,” Oxford University Press, New York, 1989.

[16]   R. M. Castro Junior, F. G. Sobreira and F. D. Bortoloti, “Modelagem Geoestatística a Partir de Parametros de Qualidade da água (IQA-NSF) para a Sub-Bacia Hidrográfica do rio Castelo (ES) Usando Sistema de Informacoes Geográficas,” Revista Brasileira de Cartografia, Vol. 59, No. 3, 2007, pp. 241-253.

[17]   N. M. Gomes, M. A. Faria, A. M. Silva, C. R. Mello and M. R. Viola, “Variabilidade Espacial de Atributos Físicos do solo Associados ao uso e Ocupacao da Paisagem,” Revista Brasileira de Engenharia Agrícola e Ambiental, Vol. 11, No. 4, 2007, pp.427-435.
http://dx.doi.org/10.1590/S1415-43662007000400013

[18]   E. T. Lee, “Statistical Methods for Survival Data Analysis,” Lifetime Learning Publications, Belmont, 1980.

 
 
Top