APM  Vol.4 No.2 , February 2014
A New Characterization of Totally Umbilical Hypersurfaces in de Sitter Space
ABSTRACT

It is shown that a compact spacelike hypersurface which is contained in the chronological future (or past) of an equator of de Sitter space is a totally umbilical round sphere if the kth mean curvature function Hk is a linear combination of Hk+1,, Hn. This is a new angle to characterize round spheres.


Cite this paper
L. Cao, G. Xu and Z. Dai, "A New Characterization of Totally Umbilical Hypersurfaces in de Sitter Space," Advances in Pure Mathematics, Vol. 4 No. 2, 2014, pp. 42-46. doi: 10.4236/apm.2014.42006.
References
[1]   A. J. Goddard, “Some Remarks on the Existence of Spacelike Hypersurfaces of Constant Mean Curvature,” Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 82, 1977, pp. 489-495.
http://dx.doi.org/10.1017/S0305004100054153

[2]   S. Montiel, “An Integral Inequality for Compact Spacelike Hypersurfaces in de Sitter Space and Applications to the Case of Constant Mean Curvature,” Indiana University Mathematics Journal, Vol. 37, No. 4, 1988, pp. 909-917.
http://dx.doi.org/10.1017/S0305004100054153

[3]   Q.-M. Cheng and S. Ishikawa, “Spacelike Hypersurfaces with Constant Scalar Curvature,” Manuscripta Mathematica, Vol. 95, No. 4, 1998, pp. 499-505. http://dx.doi.org/10.1007/s002290050043

[4]   J. A. Aledo, L. J. Alias and A. Romero, “Integral Formulas for Compact Space-Like Hypersurfaces in de Sitter Space: Applications to the Case of Constant Higher Mean Curvature,” Journal of Geometry and Physics, Vol. 31, No. 2-3, 1999, pp. 195-208.
http://dx.doi.org/10.1016/S0393-0440(99)00008-X

[5]   L. J. Alias and S.-E. Koh, “Remarks on Compact Spacelike Hypersurfaces in de Sitter Space with Constant Higher Order Mean Curvature,” Journal of Geometry and Physics, Vol. 39, No. 1, 2001, pp. 45-49.
http://dx.doi.org/10.1016/S0393-0440(00)00073-5

[6]   S.-E. Koh and M. S. Yoo, “A Characterization of Totally Umbilical Hypersurfaces in de Sitter Space,” Journal of Geometry and Physics, Vol. 51, No.1, 2004, pp. 34-39. http://dx.doi.org/10.1016/j.geomphys.2003.09.006

[7]   S. Montiel and A. Ros, “Compact Hypersurfaces: The Alexandrov Theorem for Higher Order Mean Curvatures,” In: B. Lawson and K. Tenenblat, Eds., Differential Geometry, Longman, Essex, 1991, pp. 279-296.

[8]   K. Akutagawa, “On Spacelike Hypersurfaces with Constant Mean Curvature in the de Sitter Space,” Mathematische Zeitschrift, Vol. 196, No. 1, 1987, pp. 13-19. http://dx.doi.org/10.1007/BF01179263

[9]   L. J. Alias and A. G. Colares, “A Further Characterization of Ellipsoids,” Results in Mathematics, Vol. 48, No.1-2, 2005, pp. 1-8. http://dx.doi.org/10.1007/BF03322891

[10]   H. Li, “Global Rigidity Theorems of Hypersurfaces,” Arkiv for Matematik, Vol. 35, No. 2, 1997, pp. 327-351.

[11]   J. Ramanathan, “Complete Spacelike Hypersurfaces of Constant Mean Curvature in de Sitter Space,” Indiana University Mathematics Journal, Vol. 36, No. 2, 1987, pp. 349-359. http://dx.doi.org/10.1512/iumj.1987.36.36020

[12]   Y. Zheng, “On Space-Like Hypersurfaces in the de Sitter Space,” Annals of Global Analysis and Geometry, Vol.13, No. 4, 1995, pp. 317-321. http://dx.doi.org/10.1007/BF00773403

[13]   Y. Zheng, “Space-Like Hypersurfaces with Constant Scalar Curvature in the de Sitter Space,” Differential Geometry and Its Applications, Vol. 6, No. 1, 1996, pp. 51-54. http://dx.doi.org/10.1016/0926-2245(96)00006-X

 
 
Top