Back
 APM  Vol.4 No.2 , February 2014
A New Characterization of Totally Umbilical Hypersurfaces in de Sitter Space
Abstract: It is shown that a compact spacelike hypersurface which is contained in the chronological future (or past) of an equator of de Sitter space is a totally umbilical round sphere if the kth mean curvature function Hk is a linear combination of Hk+1,…, Hn. This is a new angle to characterize round spheres.
Cite this paper: L. Cao, G. Xu and Z. Dai, "A New Characterization of Totally Umbilical Hypersurfaces in de Sitter Space," Advances in Pure Mathematics, Vol. 4 No. 2, 2014, pp. 42-46. doi: 10.4236/apm.2014.42006.
References

[1]   A. J. Goddard, “Some Remarks on the Existence of Spacelike Hypersurfaces of Constant Mean Curvature,” Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 82, 1977, pp. 489-495.
http://dx.doi.org/10.1017/S0305004100054153

[2]   S. Montiel, “An Integral Inequality for Compact Spacelike Hypersurfaces in de Sitter Space and Applications to the Case of Constant Mean Curvature,” Indiana University Mathematics Journal, Vol. 37, No. 4, 1988, pp. 909-917.
http://dx.doi.org/10.1017/S0305004100054153

[3]   Q.-M. Cheng and S. Ishikawa, “Spacelike Hypersurfaces with Constant Scalar Curvature,” Manuscripta Mathematica, Vol. 95, No. 4, 1998, pp. 499-505. http://dx.doi.org/10.1007/s002290050043

[4]   J. A. Aledo, L. J. Alias and A. Romero, “Integral Formulas for Compact Space-Like Hypersurfaces in de Sitter Space: Applications to the Case of Constant Higher Mean Curvature,” Journal of Geometry and Physics, Vol. 31, No. 2-3, 1999, pp. 195-208.
http://dx.doi.org/10.1016/S0393-0440(99)00008-X

[5]   L. J. Alias and S.-E. Koh, “Remarks on Compact Spacelike Hypersurfaces in de Sitter Space with Constant Higher Order Mean Curvature,” Journal of Geometry and Physics, Vol. 39, No. 1, 2001, pp. 45-49.
http://dx.doi.org/10.1016/S0393-0440(00)00073-5

[6]   S.-E. Koh and M. S. Yoo, “A Characterization of Totally Umbilical Hypersurfaces in de Sitter Space,” Journal of Geometry and Physics, Vol. 51, No.1, 2004, pp. 34-39. http://dx.doi.org/10.1016/j.geomphys.2003.09.006

[7]   S. Montiel and A. Ros, “Compact Hypersurfaces: The Alexandrov Theorem for Higher Order Mean Curvatures,” In: B. Lawson and K. Tenenblat, Eds., Differential Geometry, Longman, Essex, 1991, pp. 279-296.

[8]   K. Akutagawa, “On Spacelike Hypersurfaces with Constant Mean Curvature in the de Sitter Space,” Mathematische Zeitschrift, Vol. 196, No. 1, 1987, pp. 13-19. http://dx.doi.org/10.1007/BF01179263

[9]   L. J. Alias and A. G. Colares, “A Further Characterization of Ellipsoids,” Results in Mathematics, Vol. 48, No.1-2, 2005, pp. 1-8. http://dx.doi.org/10.1007/BF03322891

[10]   H. Li, “Global Rigidity Theorems of Hypersurfaces,” Arkiv for Matematik, Vol. 35, No. 2, 1997, pp. 327-351.

[11]   J. Ramanathan, “Complete Spacelike Hypersurfaces of Constant Mean Curvature in de Sitter Space,” Indiana University Mathematics Journal, Vol. 36, No. 2, 1987, pp. 349-359. http://dx.doi.org/10.1512/iumj.1987.36.36020

[12]   Y. Zheng, “On Space-Like Hypersurfaces in the de Sitter Space,” Annals of Global Analysis and Geometry, Vol.13, No. 4, 1995, pp. 317-321. http://dx.doi.org/10.1007/BF00773403

[13]   Y. Zheng, “Space-Like Hypersurfaces with Constant Scalar Curvature in the de Sitter Space,” Differential Geometry and Its Applications, Vol. 6, No. 1, 1996, pp. 51-54. http://dx.doi.org/10.1016/0926-2245(96)00006-X

 
 
Top