AJAC  Vol.5 No.3 , February 2014
A New Method for the Determination of Cyanide Ions and Their Quantification in Some Senegalese Cassava Varieties
Abstract: Cassava (Manihot esculenta Crantz) is a starchy staple food that previous researches have showed to contain cyanogenic compounds, precursors of hydrocyanic acid, undoubtedly toxic for humans. With the aim to determine food security in cassava, this study developed a simple, fast and less expensive step for quantifying cyanide ions by using micro-diffusion with modified Conway cells. After an enzymatic degradation, the cyanide ions were quantified by electrochemical procedures. The validation of this method is estimated. The concentration of cyanide ions at different part of the samples was determined. The results showed high toxicity in some fresh Senegalese consumed cassava varieties (>100 mg HCN·kg﹣1). However, in the processed cassava products, less than 10 mg HCN·kg﹣1 was found in the different varieties studied except for the chips where the levels of CN﹣ contents were important (>49 mg HCN·kg﹣1).
Cite this paper: Y. Diallo, M. Gueye, C. Ndiaye, M. Sakho, A. Kane, J. Barthelemy and G. Lognay, "A New Method for the Determination of Cyanide Ions and Their Quantification in Some Senegalese Cassava Varieties," American Journal of Analytical Chemistry, Vol. 5 No. 3, 2014, pp. 181-187. doi: 10.4236/ajac.2014.53022.

[1]   J. H. Cock, “Cassava: New Potential for a Neglected Crop,” Westview Press, Boulder, 1985, p. 191.

[2]   FAOSTAT, 2013.

[3]   C. A. Idible, “Isolation of Pure Cassava Linamarin as an Anti Cancer Agent,” Master of Science in Engineering, University of the Witwatersrand, Faculty of Engineering and the Built Environment, Johannesburg, 2006, 109 p.

[4]   E. A. Ouegnin, “Contribution à L’étude de L’acide Cyanhydrique dans un Produit de Transformation du Manioc: L’Attiéké,” Thèse de Doctorat en Pharmacie, Université Cheikh Anta Diop de Dakar, Sénégal, No. 22, 1988.

[5]   S. C. Kobawila, D. Louembe, S. Keleke, J. Hounhouigan and C. Gamba, “Reduction of the Cyanide Content during Fermentation of Cassava Roots and Leaves to Produce Bikedi and Ntobambodi, Two Food Products from Congo,” African Journal of Biotechnology, Vol. 4, No. 7, 2005, pp. 689-696.

[6]   C. Pohlandt, E. A. Jones and A. F. Lee, “A Critical Evaluation of Methods Applicable to the Determination of Cyanides,” Journal of the South African Institute of Mining and Metallurgy, Vol. 83, 1983, pp. 11-19.

[7]   M. Ernesto, A. P. Cardoso, D. Nicala, E. Mirione, F. Massaza, J. Cliff, M. R. Haque and J. H. Bradbury, “Persistent Konzo and Cyanide Toxicity from Cassava in Northern Mozambique,” Acta Tropica, Vol. 82, No. 3, 2002, pp. 357-362.

[8]   Y. Diallo, M. T. Gueye, M. Sakho, P. B. Darboux, A. Kane, J.-P. Barthelemy and G. Lognay, “Importance Nutritionnelle du Manioc et Perspectives pour L’alimentation de base au Sénégal-Synthèse Bibliographique,” Biotechnology, Agronomy, Society and Environment, Vol. 17, No. 4, 2013, pp. 634-643.

[9]   ANSD (Agence Nationale de la Statistique et de la Démographie), “Bulletin Mensuel des Statistiques Economiques,” Dakar: DAPS/MA, 2011, p. 8.

[10]   A. A. Adeniji, L. A. Ega, M. O. Akoroda, B. O. Ugwu and A. Balogum, “Global Strategy for Cassava Development. Nigeria: A Country Case Study,” Department of Agriculture, Federal Ministry of Agriculture and Natural Resources, Available Developments of New Techniques for Pari Production, 2001.

[11]   S. Williams, “Hydrocyanic Acid in Beans, Alkaline Titration Method,” Official Methods of Analysis of the Association of Official Analytical Chemist, AOAC, Inc., Arlington, 1990, p. 1213.

[12]   J. P. Baudoin, J. P. Barthelemy and V. Ndungo, “Cyanide Production of the Lima Bean, Phaseolus lunatus L.: Genetic Variability in the Primary and Secondary Gene Pools and in Some Intraspecific Hybrid,” Bulletin de Recherche Agronomique de Gembloux, Vol. 26, No. 3, 1991, pp. 367-388.

[13]   M. T. Gueye, D. Seck, A. Diallo, D. Trisman, C. Fischer, J. Barthelemy, J. Wathelet and G. Lognay, “Development of a Performant Method for Glucocapparin Determination in Boscia senegalensis Lam Ex. Poir.: A Study of the Variability,” American Journal of Analytical Chemistry, Vol. 4, No. 2, 2013, pp. 104-110.

[14]   J. P. Barthelemy and P. Maesen, “Validation des Méthodes Analytiques,” Validana. P02, BPL, 2013, 34 p.

[15]   G. Yeo, “Potentialités à la Transformation du Manioc en Afrique de l’Ouest,” In: G. Amani, C. Nindjin, B. N’zue, A. Tschannen and D. Aka, Eds., Potentialités à la Transformation du Manioc en Afrique de l’Ouest, Actes Atelier Abidjan, Côte d’Ivoire, 4-7 June 2007, pp. 48-79.

[16]   M. Bokanga, “Distribution of Cyanogenic Potential in Cassava Germplasm,” Acta Horticulturae (ISHS), Vol. 375, 1994, pp. 117-123.

[17]   A. Nzigamasabo and Z. H. Ming, “Traditional Cassava Foods in Burundi: A Review,” Food Reviews International, Vol. 22, No. 1, 2006, pp. 1-27.

[18]   IITA, “Archival Report (1989-1993). Part 1. Cassava Breeding, Cytogenetics and Histology,” Vol. 2, Germplasm Enhancement, Crop Improvement Division, TRIP (Tuber Root Improvement Program), IITA, Ibadan, 1993.

[19]   M. Bokanga, I. J. Ekanayake, A. G. O. Dixon and M. C. M. Porto, “Genotype-Environment Interaction for Cyanogenic Potential in Cassava,” Acta Horticulturae (ISHS), Vol. 375, 1994, pp. 131-140.

[20]   FAO/WHO, “Joint FAO/WHO Food Standards Program,” Codex Alimentarius Commission XII, Supplement 4, 1991, Rome.

[21]   Y. Diallo, M. T. Gueye, P. B. Darboux, S. Guede, A. Kane and J. P. Barthelemy, “Des Traitements Technologiques pour Eliminer la Toxicité du Manioc,” Itaechos, Vol. 7, 2013, pp. 10-11.