Characterization of Six Categories of Systematic 2^{n－(n－k)} Fractional Factorial Designs

Author(s)
Hisham Hilow

ABSTRACT

Six categories of systematic 2^{n－(n－k)} designs derivable from the full 2* ^{k}* factorial experiment by the
interactions-main effects assignment are available for carrying out 2

Cite this paper

H. Hilow, "Characterization of Six Categories of Systematic 2^{n－(n－k)} Fractional Factorial Designs," *Open Journal of Statistics*, Vol. 4 No. 1, 2014, pp. 75-88. doi: 10.4236/ojs.2014.41008.

H. Hilow, "Characterization of Six Categories of Systematic 2

References

[1] C. S. Cheng and M. Jacroux, “The Construction of Trend-Free Run Orders of Two-Level Factorial Designs,” Journal of the American Statistical Association, Vol. 83, No. 404, 1988, pp. 1152-1158. http://dx.doi.org/10.1080/01621459.1988.10478713

[2] D. C. Coster and C. S. Cheng, “Minimum Cost Trend-Free Run Orders of Fractional Factorial Designs,” Annals of Statistics, Vol. 16, No. 3, 1988, pp. 1188-1205. http://dx.doi.org/10.1214/aos/1176350955

[3] X. Cui and P. W. John, “Time Trend Free Run Orders with Minimum Level Changes,” Communications in Statistics-Theory and Methods, Vol. 27, No. 1, 1998, pp. 55-68.

http://dx.doi.org/10.1080/03610929808832650

[4] A. A. Correa, P. Grima and Tort-Martorell, “Experimentation Order with Good Properties for 2k Factorial Designs,” Journal of Applied Statistics, Vol. 36, No. 7, 2009, pp. 743-754.

http://dx.doi.org/10.1080/02664760802499337

[5] H. M. Hilow, “Comparison among Run Order Algorithms for Sequential Factorial Experiments,” Journal of Computational Statistics and Data Analysis, Vol. 58, 2013, pp. 397-406.

http://dx.doi.org/10.1016/j.csda.2012.09.013

[6] C. S. Cheng, R. J. Martin and B. Tang, “Two-Level Factorial Designs with Extreme Number of Level Changes,” The Annals of Statistics, Vol. 26, No. 4, 1998, pp. 1522-1539.

http://dx.doi.org/10.1214/aos/1024691252

[7] H. M. Hilow, “Minimum Cost Linear Trend Free Fractional Factorial Designs,” Journal of Statistical Theory and Practice, Vol. 6, No. 3, 2012, pp. 580-589.

http://dx.doi.org/10.1080/15598608.2012.698209

[8] H. M. Hilow, “Minimum Cost Linear Trend Free 2n-(n-k) Designs of Resolution IV,” Accepted for Publication in Communications in Statistics—Theory and Methods, 2013.

[9] N. R. Draper and D. M. Stoneman, “Factor Level Changes and Linear Trends in Eight-Run Two-Level Factorial Designs,” Technometrics, Vol. 10, No. 2, 1968, pp. 301-311.

http://dx.doi.org/10.1080/00401706.1968.10490562

[10] C. S. Cheng and D. M. Steinburg, “Trend Robust Two-Level Factorial Designs,” Biometrika, Vol. 78, No. 2, 1991, pp. 325336. http://dx.doi.org/10.1093/biomet/78.2.325

[1] C. S. Cheng and M. Jacroux, “The Construction of Trend-Free Run Orders of Two-Level Factorial Designs,” Journal of the American Statistical Association, Vol. 83, No. 404, 1988, pp. 1152-1158. http://dx.doi.org/10.1080/01621459.1988.10478713

[2] D. C. Coster and C. S. Cheng, “Minimum Cost Trend-Free Run Orders of Fractional Factorial Designs,” Annals of Statistics, Vol. 16, No. 3, 1988, pp. 1188-1205. http://dx.doi.org/10.1214/aos/1176350955

[3] X. Cui and P. W. John, “Time Trend Free Run Orders with Minimum Level Changes,” Communications in Statistics-Theory and Methods, Vol. 27, No. 1, 1998, pp. 55-68.

http://dx.doi.org/10.1080/03610929808832650

[4] A. A. Correa, P. Grima and Tort-Martorell, “Experimentation Order with Good Properties for 2k Factorial Designs,” Journal of Applied Statistics, Vol. 36, No. 7, 2009, pp. 743-754.

http://dx.doi.org/10.1080/02664760802499337

[5] H. M. Hilow, “Comparison among Run Order Algorithms for Sequential Factorial Experiments,” Journal of Computational Statistics and Data Analysis, Vol. 58, 2013, pp. 397-406.

http://dx.doi.org/10.1016/j.csda.2012.09.013

[6] C. S. Cheng, R. J. Martin and B. Tang, “Two-Level Factorial Designs with Extreme Number of Level Changes,” The Annals of Statistics, Vol. 26, No. 4, 1998, pp. 1522-1539.

http://dx.doi.org/10.1214/aos/1024691252

[7] H. M. Hilow, “Minimum Cost Linear Trend Free Fractional Factorial Designs,” Journal of Statistical Theory and Practice, Vol. 6, No. 3, 2012, pp. 580-589.

http://dx.doi.org/10.1080/15598608.2012.698209

[8] H. M. Hilow, “Minimum Cost Linear Trend Free 2n-(n-k) Designs of Resolution IV,” Accepted for Publication in Communications in Statistics—Theory and Methods, 2013.

[9] N. R. Draper and D. M. Stoneman, “Factor Level Changes and Linear Trends in Eight-Run Two-Level Factorial Designs,” Technometrics, Vol. 10, No. 2, 1968, pp. 301-311.

http://dx.doi.org/10.1080/00401706.1968.10490562

[10] C. S. Cheng and D. M. Steinburg, “Trend Robust Two-Level Factorial Designs,” Biometrika, Vol. 78, No. 2, 1991, pp. 325336. http://dx.doi.org/10.1093/biomet/78.2.325