OJM  Vol.4 No.1 , February 2014
A Toy Model of Universe
ABSTRACT

In this paper, we suggest that a toy model of our universe is based on FRW bulk viscous cosmology in presence of modified Chaplygin gas. We obtain modified Friedman equations due to bulk viscosity and Chaplygin gas and calculate time-dependent energy density for the special case of flat space.


Cite this paper
J. Naji, R. Darabi and S. Heydari, "A Toy Model of Universe," Open Journal of Microphysics, Vol. 4 No. 1, 2014, pp. 1-5. doi: 10.4236/ojm.2014.41001.
References
[1]   A. G. Riess, et al., “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant,” The Astronomical Journal, Vol. 116, No. 3, 1998, pp. 1009-1038. http://dx.doi.org/10.1086/300499

[2]   S. Perlmutter, et al., “Measurements of Ω and Λ from 42 High-Redshift Supernovae,” The Astronomical Journal, Vol. 517, No. 2, 1999, pp. 565-586.
http://dx.doi.org/10.1086/307221

[3]   R. A. Knop, et al., “New Constraints on ΩM, ΩΛ, and w from an Independent Set of Eleven High-Redshift Supernovae Observed with HST,” The Astronomical Journal, Vol. 598, No. 1, 2003, p. 102.
http://dx.doi.org/10.1086/378560

[4]   A. G. Riess, et al., “Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution,” The Astronomical Journal, Vol. 607, 2004, pp. 665-687.
http://dx.doi.org/10.1086/383612

[5]   C. L. Bennet, et al., “First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results,” The Astrophysical Journal Supplement Series, Vol. 148, 2003, p. 1.
http://dx.doi.org/10.1086/377253

[6]   K. Bamba, S. Capozziello, S. Nojiri and S. D. Odintsov, “Dark Energy Cosmology: The Equivalent Description via Different Theoretical Models and Cosmography Tests,” Astrophysics and Space Science, Vol. 342, 2012, pp. 155-228.

[7]   S. M. Carroll, “The Cosmological Constant,” Living Reviews in Relativity, Vol. 3, 2001, p. 1.

[8]   T. Padmanabhan, “Cosmological Constant—The Weight of the Vacuum,” Physics Reports, Vol. 380, No. 5-6, 2003, pp. 235-320.
http://dx.doi.org/10.1016/S0370-1573(03)00120-0

[9]   P. J. E. Peebles and B. Ratra, “The Cosmological Constant and Dark Energy,” Reviews of Modern Physics, Vol. 75, No. 2, 2003, pp. 559-606.
http://dx.doi.org/10.1103/RevModPhys.75.559

[10]   S. Nobbenhuis, “Categorizing Different Approaches to the Cosmological Constant Problem,” Foundations of Physics, Vol. 36, No. 5, 2006, pp. 613-680.
http://dx.doi.org/10.1007/s10701-005-9042-8

[11]   P. J. E. Peebles and B. Ratra, “Cosmology with A Time-Variable Cosmological ‘Constant’,” The Astronomical Journal, Vol. 325, 1988, pp. L17-L20.
http://dx.doi.org/10.1086/185100

[12]   B. Ratra and P. J. E. Peebles, “Cosmological Consequences of a Rolling Homogeneous Scalar Field,” Physical Review D, Vol. 37, No. 12, 1988, pp. 3406-3427.
http://dx.doi.org/10.1103/PhysRevD.37.3406

[13]   M. S. Turner and M. J. White, “CDM Models with a Smooth Component,” Physical Review D, Vol. 56, No. 8, 1997, pp. 4439-4443.
http://dx.doi.org/10.1103/PhysRevD.56.R4439

[14]   R. R. Caldwell, “A Phantom Menace? Cosmological Consequences of a Dark Energy Component with Super-Negative Equation of State,” Physics Letters B, Vol. 545, No. 1-2, 2002, pp. 23-29.
http://dx.doi.org/10.1016/S0370-2693(02)02589-3

[15]   A. Sen, “Tachyon Matter,” Journal of High Energy Physics, Vol. 2002.
http://dx.doi.org/10.1088/1126-6708/2002/07/065

[16]   B. Feng, X. L. Wang and X. M. Zhang, “Dark Energy Constraints from the Cosmic Age and Supernova,” Physics Letters B, Vol. 607, No. 1-2, 2005, pp. 35-41.
http://dx.doi.org/10.1016/j.physletb.2004.12.071

[17]   Z. K. Guo, Y. S. Piao, X. M. Zhang and Y. Z. Zhang, “Cosmological Evolution of a Quintom Model of Dark Energy,” Physics Letters B, Vol. 608, No. 3-4, 2005, pp. 177-182.
http://dx.doi.org/10.1016/j.physletb.2005.01.017

[18]   H. Wei and R. G. Cai, “Cosmological Evolution of ‘Hessence’ Dark Energy and Avoidance of the Big Rip,” Physical Review D, Vol. 72, No. 12, 2005, Article ID: 123507.
http://dx.doi.org/10.1103/PhysRevD.72.123507

[19]   H. Wei, N. N. Tang and R. G. Cai, “Reconstruction of Hessence Dark Energy and the Latest Type Ia Supernovae Gold Dataset,” Physical Review D, Vol. 75, No. 4, 2007, Article ID: 043009.
http://dx.doi.org/10.1103/PhysRevD.75.043009

[20]   N. Ibotombi Singh and S. Romaleima Devi, “A New Class of Bulk Viscous FRW Cosmological Models in a Scale Covariant Theory of Gravitation,” Astrophysics and Space Science, Vol. 334, No. 2, 2011, pp. 231-236.
http://dx.doi.org/10.1007/s10509-011-0739-1

[21]   S. Chatterjee and B. Bhui, “Viscous Fluid in a Kaluza-Klein Metric,” Astrophysics and Space Science, Vol. 167, No. 1, 1990, pp. 61-67.
http://dx.doi.org/10.1007/BF00642063

[22]   A. Banergee, B. Bhui and S. Chatterjee, “Bianchi Type-I Cosmological Models in Higher Dimensions,” The Astronomical Journal, Vol. 358, 1990, pp. 23-27.

[23]   G. P. Singh, R. V. Deshpande and T. Singh, “Higher-Dimensional Cosmological Model with Variable Gravitational Constant and Bulkviscosity in Lyra Geometry,” Pramana, Vol. 63, No. 5, 2004, pp. 937-945.
http://dx.doi.org/10.1007/BF02704332

[24]   G. L. Murphy, “Big-Bang Model without Singularities,” Physical Review D, Vol. 8, No. 12, 1973, pp. 4231-4233.
http://dx.doi.org/10.1103/PhysRevD.8.4231

[25]   R. Bali and S. Dave, “Viscous Cosmological Models with Particle Creation in Brans-Dicke Theory,” Astrophysics and Space Science, Vol. 282, No. 2, 2002, pp. 461-466.
http://dx.doi.org/10.1023/A:1020834610024

[26]   S. D. Katore, A. Y. Shaikh, D. V. Kapse and S. A. Bhaskar, “FRW Bulk Viscous Cosmology in Multi Dimensional Space-Time,” International Journal of Theoretical Physics, Vol. 50, No. 9, 2011, pp. 2644-2654.
http://dx.doi.org/10.1007/s10773-011-0760-8

[27]   H. Saadat, “FRW Bulk Viscous Cosmology in Non-Flat Universe,” International Journal of Theoretical Physics, Vol. 51, No. 5, 2012, pp. 1317-1322.
http://dx.doi.org/10.1007/s10773-011-1007-4

[28]   B, Saha, H. Amirhashchi and A. Pradhan, “Two-Fluid Scenario for Dark Energy Models in an FRW Universe-Revisited,” Astrophysics and Space Science, Vol. 342, No. 1, 2012, pp. 257-267.
http://dx.doi.org/10.1007/s10509-012-1155-x

[29]   M. Jamil, D. Momeni, N. S. Serikbayev and R. Myrzakulov, “FRW and Bianchi Type I Cosmology of f-Essence,” Astrophysics and Space Science, Vol. 339, No. 1, 2012, pp. 37-43.
http://dx.doi.org/10.1007/s10509-011-0964-7

[30]   J. Sadeghi, M. Khurshudyan, B. Pourhassan and H. Farahani, “Time-Dependent Density of Modified Cosmic Chaplygin Gas with Cosmological Constant in Non-Flat Universe,” IJTP, 2014.

[31]   U. Debnath, A. Banerjee and S. Chakraborty, “Role of Modified Chaplygin Gas in Accelerated Universe,” Classical and Quantum Gravity, Vol. 21, 2004, pp. 5609-5618.
http://dx.doi.org/10.1088/0264-9381/21/23/019

[32]   Y. D. Xu, Z. G. Huang and X. H. Zhai, “A New Type of Interaction between Generalized Chaplygin Gas and Dark Matter,” Astrophysics and Space Science, Vol. 339, No. 1, 2012, pp. 31-36.
http://dx.doi.org/10.1007/s10509-012-0974-0

[33]   T. Bandyopadhyay, “Thermodynamics of Gauss-Bonnet Brane with Modified Chaplygin Gas,” Astrophysics and Space Science, Vol. 341, No. 2, 2012, pp. 689-693.
http://dx.doi.org/10.1007/s10509-012-0974-0

[34]   P. Rudra, U. Debnath and R. Biswas, “Dynamics of Modified Chaplygin Gas in Brane World Scenario: Phaseplane Analysis,” Astrophysics and Space Science, Vol. 339, No. 1, 2012, pp. 53-64.
http://dx.doi.org/10.1007/s10509-011-0967-4

[35]   P. Rudra, “Dynamics of Interacting Generalized Cosmic Chaplygin Gas in Brane-World Scenario,” Astrophysics and Space Science, Vol. 342, No. 2, 2012, pp. 579-599.
http://dx.doi.org/10.1007/s10509-012-1198-z

[36]   H. Saadat and B. Pourhassan, “Effect of Varying Bulk Viscosity on Generalized Chaplygin Gas,” International Journal of Theoretical Physics, 2013.

[37]   J. Naji, B. Pourhassan and A. R. Amani, “Effect of Shear and Bulk Viscosities on Interactingmodified Chaplygin Gas Cosmology,” International Journal of Modern Physics D, 2013.

[38]   H. Saadat and B. Pourhassan, “Viscous Varying Generalized Chaplygin Gas with Cosmological Constant and Space Curvature,” International Journal of Theoretical Physics, Vol. 52, 2013, pp. 3712-3720.

[39]   B. Pourhassan, “Viscous Modified Cosmic Chaplygin Gas Cosmology,” International Journal of Modern Physics D, Vol. 22, No. 9, 2013, Article ID: 1350061.
http://dx.doi.org/10.1142/S0218271813500612

[40]   A. R. Amani and B. Pourhassan, “Viscous Generalized Chaplygin Gas with Arbitrary α,” International Journal of Theoretical Physics, Vol. 52, No. 4, 2013, pp. 1309- 1313. http://dx.doi.org/10.1007/s10773-012-1446-6

[41]   H. Saadat and B. Pourhassan, “FRW Bulk Viscous Cosmology with Modified Cosmic Chaplygin Gas,” Astrophysics and Space Science, Vol. 344, No. 1, 2013, pp. 237-241. http://dx.doi.org/10.1007/s10509-012-1301-5

[42]   H. Saadat and B. Pourhassan, “FRW Bulk Viscous Cosmology with Modified Chaplygin Gas in Flat Space,” Astrophysics and Space Science, Vol. 343, No. 2, 2013, pp. 783-786. http://dx.doi.org/10.1007/s10509-012-1268-2

[43]   N. Mazumder, R. Biswas and S. Chakraborty, “FRW Cosmological Model with Modified Chaplygin Gas and Dynamical System,” International Journal of Theoretical Physics, Vol. 51, No. 9, pp. 2754-2758.
http://dx.doi.org/10.1007/s10773-012-1150-6

 
 
Top