“Smart Design” of Quantum Wells and Double-Quantum Wells Structures

Show more

References

[1] V. Milanovic and Z. Ikonic, “Optimization of Nonlinear Optical Rectification in Semiconductor Quantum Wells Using the Inverse Spectral Theory,” Solid State Community, Vol. 104, No. 8, 1997, pp. 445-450.

http://dx.doi.org/10.1016/S0038-1098(97)00396-7

[2] I. Tralle and G. Petrov, “On the Semiconductor Well Engineering,” Molecular Physics Reports, Vol. 23, 1999, pp. 199-202.

[3] S. Tomic, V. Milanovic and Z. Ikonic, “Quantum Well Shape Tailoring via Inverse Spectral Theory: Optimizing Resonant Second-Harmonic Generation,” Journal of Physics: Condensed Matter, Vol. 10, No. 29, 1998, pp. 6523-6532. http://dx.doi.org/10.1088/0953-8984/10/29/012

[4] D. Bessis and G. A. Mezincescu, “Design of Semiconductor Heterostructures with Preset Electron Reflectance by Inverse Scattering Techniques,” Microelectronics Journal, Vol. 30, No. 10, 1999, pp. 953-974.

http://dx.doi.org/10.1016/S0026-2692(99)00059-2

[5] A. A. Suzko and I. Tralle, “Reconstruction of Quantum Well Potentials via the Intertwining Operator Technique,” Acta Physica Polonica B, Vol. 39, No. 3, 2008, pp. 545-567.

[6] S. A. Sofianos, G. J. Rampho, H. A. Donfack, I. E. Lagaris and H. Leeb, “Design of Quantum Filters with Pre-Determined Reflection and Transmission Properties,” Microelectronics Journal, Vol. 38, No. 2, 2007, pp. 235-244.

http://dx.doi.org/10.1016/j.mejo.2006.11.006

[7] T. Wojtowicz, G. Karczewski and J. Kossut, “Excitons in Novel Diluted Magnetic Semiconductor Quantum Structures,” Thin Solid Films, Vol. 306, No. 2, 1997, pp. 271-282. http://dx.doi.org/10.1016/S0040-6090(97)00284-8

[8] K. Kowalik, A. Kudelski, J. A. Gaj, T. Wojtowicz, O. Krebs and P. Voisin, “In-Plane Optical Anisotropy of Parabolic and Half-Parabolic Cd1-xMnxTe Quantum Wells,” Solid State Community, Vol. 126, No. 8, 2003, pp. 467-471. http://dx.doi.org/10.1016/S0038-1098(03)00190-X

[9] B. M. Levitan and M. G. Gasymov, “Determination of Differential Equation by Two of Its Spectra,” Russian Mathematical Surveys, Vol. 19, No. 2, 1964, pp. 3-63.

[10] B. M. Levitan, “Inverse Sturm-Liouville Problems,” Nauka, Moscow, 1984.

[11] H. B. Thacker, C. Quigg and J. L. Rosner, “Inverse Scattering Problem for Quarkonium Systems,” Physical Review D, Vol. 18, No. 1, 1978, pp. 274-287.

http://dx.doi.org/10.1103/PhysRevD.18.274

[12] J. F. Schonefeld, W. Kwong, J. L. Rosner, C. Quigg and H. B. Thacker, “On the Convergence of Reflectionless Approximations to Confining Potentials,” Annals of Physics, Vol. 128, No. 1, 1980, pp. 1-28.

http://dx.doi.org/10.1016/0003-4916(80)90055-X

[13] I. M. Gel’fand and B. M. Levitan, “On the Determination of a Differential Equation from Its Spectrum Function Izv. Akad. Nauk SSSR Ser. Mat.,” Vol. 15, No. 4, 1951, pp. 309-360.

[14] V. A. Marchenko, “Spectral Theory of Sturm-Liouville Operators,” Nauk. Dumka, Kiev, 1972.

[15] B. N. Zakhariev and A. A. Suzko, “Direct and Inverse Problems. Potentials in Quantum Scattering,” Springer-Verlag, Berlin, 1990.

[16] Z. S. Agranovich and V. A. Marchenko, “Sturm-Liouville Operators and Their Applications,” Nauk. Dumka, Kiev, 1977.

[17] J. Hadamard, “Le Probleme de Cauchy et les équations aux Derives Partiels Linéaires Hyperboliques,” Hermann, Paris, 1932.

[18] A. N. Tikhonov and V. Ya. Arsenin, “Methods of Solution of Ill-Posed Problems,” Nauka, Moscow, 1979.

[19] A. M. Tomlinson, C. C. Chang, R. J. Stone, R. J. Nicholas, A. M. Fox, M. A. Pate and C. T. Foxon, “Intersubband Transitions in GaAs Coupled-Quantum-Wells for Use as a Tunable Detector at THz Frequencies,” Applied Physics Letters, Vol. 76, No. 12, 2000, pp. 1579-1581.

http://dx.doi.org/10.1063/1.126101