AMPC  Vol.4 No.2 , February 2014
Triton Facilitated Spherical TiO2 Nanoparticles and Their Advantage in a Dye-Sensitized Solar Cell
ABSTRACT
Spherical TiO2 particles (60 nm) were obtained by using a Triton X-100. The surfactant was employed in two stages, i.e., in the hydrolysis of TiCl4 and then in the precipitation of the corresponding Ti (IV) polymers. The advantages of such spherical TiO2 particles were examined in terms of photovoltaic characteristics of a dye-sensitized solar cell (DSSC) using Orange IV dye as sensitizer. Significantly higher overall solar energy conversion efficiency was obtained for a DSSC using the film of these spherical TiO2 particles, compared with that of a cell using a TiO2 film prepared without surfactant.

Cite this paper
N. Al-Omair, S. Reda and F. Al-Hajri, "Triton Facilitated Spherical TiO2 Nanoparticles and Their Advantage in a Dye-Sensitized Solar Cell," Advances in Materials Physics and Chemistry, Vol. 4 No. 2, 2014, pp. 29-32. doi: 10.4236/ampc.2014.42005.
References
[1]   B. O’Reagan and M. Gràtzel, “A Low-Cost, High-Efficiency Solar Cell Based on Dye Sensitized Colloidal TiO2 Films,” Nature, Vol. 353, No. 6346, 1991, pp. 737-740.
http://dx.doi.org/10.1038/353737a0

[2]   C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngocle, J. D. Decoppet, J. H. Tsai, C. Gratzel, C. G. Wu, S. M. Zakeeruddin and M. Gratzel, “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells,” ACS NANO, Vol. 3, No. 10, 2009, pp. 3103-3109.
http://dx.doi.org/10.1021/nn900756s

[3]   E. V. A. Premalala, N. Dematagea, G. R. A. Kumarab, R. M. G. Rajapakseb, K. Murakamib and A. Konno, “Shorter Nanotubes and Finer Nanoparticles of TiO2 for Increased Performance in Dye-Sensitized Solar Cells,” Electrochimica Acta, Vol. 63, 2012, pp. 375-380.
http://dx.doi.org/10.1016/j.electacta.2011.12.127

[4]   M. R. Mohammadi, R. R. M. Louca, D. J. Fray and M. E. Welland, “Dye-Sensitized Solar Cells Based on a Single Layer Deposition of TiO2 from a New Formulation Paste and Their Photovoltaic Performance,” Solar Energy, Vol. 86, No. 9, 2012, pp. 2654-2664.
http://dx.doi.org/10.1016/j.solener.2012.06.005

[5]   L. Kavan, M. Gratzel, J. Rathousky and A. Zukal, “Nanocrystalline TiO2 (Anatase) Electrodes: Surface Morphology, Adsorption, and Electrochemical Properties,” Journal of the Electrochemical Society, Vol. 143, No. 2, 1999, pp. 394-400.
http://dx.doi.org/10.1149/1.1836455

[6]   K.-H. Jung, J. S. Hong, R. Vittal and K.-J. Kim, “Enhanced Photocurrent of Dye-Sensitized Solar Cells by Modification of TiO2 with Carbon Nanotubes,” Chemistry Letters, Vol. 8, 2000, pp. 864-865.

[7]   N. Papageorgiou, C. Barbe and M. Gratzel, “Morphology and Adsorbate Dependence of Ionic Transport in Dye Sensitized Mesoporous TiO2 Films,” The Journal of Physical Chemistry B, Vol. 102, No. 21, 1998, pp. 4156-4164.
http://dx.doi.org/10.1021/jp980819n

[8]   C. J. Barbe′, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover and M. Gratzel, “Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications,” Journal of the American Ceramic Society, Vol. 80, No., 1997, pp. 3157-3171.
http://dx.doi.org/10.1111/j.1151-2916.1997.tb03245.x

[9]   D. M. Antonelli and J. Y. Ying, “Synthesis of Hexagonally Packed Mesoporous TiO2 by a Modified Sol-Gel Method,” Angewandte Chemie International Edition, Vol. 34, No., 1995, pp. 2014-2017.
http://dx.doi.org/10.1002/anie.199520141

[10]   H.-S. Yun, K. Miyazawa, H. Zhou, I. Honma, M. Kuwabara, “Synthesis of Mesoporous Thin TiO2 Films with Hexagonal Pore Structures Using Triblock Copolymer Templates,” Advanced Materials, Vol. 13, No. 18, 2001, pp. 1377-1380.
http://dx.doi.org/10.1002/1521-4095(200109)13:18<1377::AID-ADMA1377>3.0.CO;2-T

[11]   M. Adachi, Y. Murata, I. Okada and S. Yoshikawa, “Formation of Titania Nanotubes and Applications for Dye- Sensitized Solar Cells,” Journal of The Electrochemical Society, Vol. 150, No. 8, 2003, pp. G488-G493.
http://dx.doi.org/10.1149/1.1589763

[12]   S. Kobayashi, K. Hanabusa, N. Hamasaki, M. Kimura and H. Shirai, “Preparation of TiO2 Hollow-Fibers Using Supramolecular Assemblies,” Chemistry of Materials, Vol. 12, No. 6, 2000, pp. 1523-1525.
http://dx.doi.org/10.1021/cm0000907

[13]   L. Kavan, J. Rathousky′, M. Gra¨tzel, V. Shklover, A. Zukal, “Surfactant-Templated TiO2 (anatase): Characteristic Features of Lithium Insertion Electrochemistry in Organized Nanostructures,” The Journal of Physical Chemistry B, Vol. 104, No. 50, 2000, pp. 12012-12020.
http://dx.doi.org/10.1021/jp003609v

[14]   D.-U. Lee, S.-R. Jang, R. Vittal, J. Lee and K.-J. Kim, “CTAB Facilitated Spherical Rutile TiO2 Particles and Their Advantage in a Dye-Sensitized Solar Cell,” Solar Energy, Vol. 82, No. 11, 2008, pp. 1042-1048.
http://dx.doi.org/10.1016/j.solener.2008.04.006

[15]   M. Ristic, M. Ivanda, S. Popvic and S. Music, “Dependence of Nanocrystalline SnO2 Paticle Size on Synthesis Route,” Journal of Non-Crystalline Solids, Vol. 303, No. 2, 2002, pp. 270-280.
http://dx.doi.org/10.1016/S0022-3093(02)00944-4

[16]   E. Stathatos, Y. J. Chen and D. D. Dionysiou, “Quasi- Solid-State Dye-Sensitized Solar Cells Employing Nanocrystalline TiO2 Films Made at Low Temperature,” Solar Energy Materials & Solar Cells, Vol. 92, No. 11, 2008, pp. 1358-1365.
http://dx.doi.org/10.1016/j.solmat.2008.05.009

 
 
Top