[1] S. Lie, “Klassifikation und Integration Vongewohnlichen Differentialgleichungenzwischen x, y die eine Gruppe von Transformation engestatten. III,” Archiv for Matematikog Naturvidenskab, Vol. 8, No. 4, 1883, pp. 371-427.
[2] A. M. Tresse, “Détermination des Invariants Ponctuels de l’équationdifférentielleordinaire du Second Ordre ,” Preisschriften der Fürstlichen Jablonowski'schen Gesellschaft XXXII, Leipzig, 1896.
[3] R. Liouville, “Sur les Invariants de Certaines Equations Differentielles et Surleurs Applications,” Journal de l’école Polytechnique, Vol. 59, 1889, pp. 7-76.
[4] N. H. Ibragimov, “Invariants of a Remarkable Family of Nonlinear Equations,” Nonlinear Dynamics, Vol. 30, No. 2, 2002, pp. 155-166. http://dx.doi.org/10.1023/A:1020406015011
[5] E. Cartan, “Sur les Variétés àconnexion Projective,” Bulletin de la Société Mathématique de France, Vol. 52, 1924, pp. 205-241.
[6] C. W. Soh and F. M. Mahomed, “Linearization Criteria for a System of Second-Order Ordinary Differential Equations,” International Journal of Non-Linear Mechanics, Vol. 36, No. 36, 2001, pp. 671-677.
http://dx.doi.org/10.1016/S0020-7462(00)00032-9
[7] S. Sookmee and S. V. Meleshko, “Linearization of Two Second-Order Ordinary Differential Equations via Fiber Preserving Point Transformations,” ISRN Mathematical Analysis, Vol. 2001, 2011, Article ID: 452689.
http://dx.doi.org/10.5402/2011/452689
[8] A. V. Aminova and N. A.-M. Aminov, “Projective Geometry of Systems of Second-Order Differential Equations,” Sbornik: Mathematics, Vol. 197, No. 7, 2006, pp. 951-955.
http://dx.doi.org/10.1070/SM2006v197n07ABEH003784
[9] F. M. Mahomed and A. Qadir, “Linearization Criteria for a System of Second-Order Quadratically Semi-Linear Ordinary Differential Equations,” Nonlinear Dynamics, Vol. 48, No. 4, 2007, pp. 417-422. http://dx.doi.org/10.1007/s11071-006-9095-z
[10] S. Sookmee, “Invariants of the Equivalence Group of a System of Second-Order Ordinary Differential Equations,” M.S. Thesis, 2005.
[11] S. Sookmee and S. V. Meleshko, “Conditions for Linearization of a Projectable System of Two Second-Order Ordinary Differential Equations,” Journal of Physics A: Mathematical and Theoretical, Vol. 41, No. 402001, 2008, pp. 1-7.
[12] S. Neut, M. Petitot and R. Dridi, “élieCartan’s Geometrical Vision or How to Avoid Expression Swell,” Journal of Symbolic Computation, Vol. 44, No. 3, 2009, pp. 261-270.
http://dx.doi.org/10.1016/j.jsc.2007.04.006
[13] Y. Y. Bagderina, “Linearization Criteria for a System of Two Second-Order Ordinary Differential Equations,” Journal of Physics A, Vol. 43, No. 46, 2010, Article ID: 465201.