FNS  Vol.5 No.4 , February 2014
High Fibre Diets and Alzheimer’s Disease
Abstract: The understanding of cholesterol and its pathogenesis to Alzheimer’s disease (AD) pathogenic process is important for the possible prevention of AD. High fibre diets that contain phytosterols have been shown to lower LDL and increase HDL cholesterol and are implicated in membrane cholesterol and amyloid beta (Aβ) homeostasis. The convergence of diet and AD may be related to the effects of phytosterols since plasma cholesterol is closely linked and regulated by phytosterols. Dietary fibre modifications that are low in fat and glucose reduce the risk for AD by not only effecting cell membranes and nutrient sensing G coupled receptors but also by regulating number of nuclear receptors such as histone deacetylases (HDAC) and peroxisome proliferator activated receptors (PPAR) that control glucose, fatty acids and cholesterol and have significant effects on the brain cholesterol homeostasis and amyloidosis. The peripheral sink Aβ hypothesis indicates that the peripheral clearance of Aβ and its regulation by dietary phytosterols is of substantial interest since it may delay hypercholesterolemia and the early onset of amyloid plaque development. Liver disease has been of central importance with aging and programmed cell death pathways. Nutritional therapy has emerged as a novel approach to control appetite and the role of nutrigenomics as an early nutritional therapy may assist genes to delay liver and brain diseases such as Parkinson’s disease (PD) and Huntington’s disease (HD) that are associated with aging. The understanding of phytosterols and the role of these lipids in drug therapy such as cholesterol lowering drugs may provide molecular mechanisms that are involved in the regulation of cell Aβ clearance and metabolism. High fibre diets also contain various fatty acids such as the short chain fatty acids (SCFA) and the understanding of synergistic effects of SCFA and phytosterols in glucose regulation and cholesterol homeostasisis important to our understanding of diet, lifestyle and drugs in relation to peripheral amyloidosis and gene expression that play an early role in the development of AD.
Cite this paper: I. Martins and W. Fernando, "High Fibre Diets and Alzheimer’s Disease," Food and Nutrition Sciences, Vol. 5 No. 4, 2014, pp. 410-424. doi: 10.4236/fns.2014.54049.

[1]   J. Shen and J. Tower, “Programmed Cell Death and Apoptosis in Aging and Life Span Regulation,” Discovery Medicine, Vol. 8, No. 43, 2009, pp. 223-226.

[2]   I. J. Martins, R. Creegan, W. L. F. Lim and R. N. Martins, “Molecular Insights into Appetite Control and Neuroendocrine Disease as Risk Factors for Chronic Diseases in Western Countries,” Open Journal of Endocrine and Metabolic Diseases, Vol. 3, No. 5A, 2013, pp. 11-33.

[3]   M. Plank, D. Wuttke, S. van Dam, S. A. Clarke and J. Pde Magalh?es, “A Meta-Analysis of Caloric Restriction Gene Expression Profiles to Infer Common Signatures and Regulatory Mechanisms,” Molecular Biosystems, Vol. 8, No. 4, 2012, pp. 1339-1349.

[4]   Y. Li, M. Daniel and T. Tollefsbol, “Epigenetic Regulation of Caloric Restriction in Aging,” BMC Medicine, Vol. 9, No. 98, 2011, pp. 1-12.

[5]   J. F. Trepanowski, R. E. Canale, K. E. Marshall, M. M. Kabir and R. J. Bloomer, “Impact of Caloric and Dietary Restriction Regimens on Markers of Health and Longevity in Humans and Animals: A Summary of Available Findings,” Nutrition Journal, Vol. 10, No. 107, 2011, pp. 1-13.

[6]   S. Ribaric, “Diet and Aging,” Oxidative Medicine and Cellular Longevity, Vol. 2012, 2012, pp. 1-20.

[7]   M. D. Bruss, C. F. Khambatta, M. A. Ruby, I. Aggarwal and M. K. Hellerstein, “Calorie Restriction Increases Fatty Acid Synthesis and Whole Body Fat Oxidation Rates,” American Journal Physiology Endocrinology Metabolism, Vol. 298, No. 1, 2010, pp. E108-E116.

[8]   W. Stünkel and R. M. Campbell, “Sirtuin 1 (SIRT1): The Misunderstood HDAC,” Journal of Biomolecular Screening, Vol. 16, No. 10, 2011, pp. 1153-1169.

[9]   K. Xu, X. L. Dai, H. C. Huang and Z. F. Jiang, “Targeting HDACs: A Promising Therapy for Alzheimer’s Disease,” Oxidative Medicine and Cellular Longevity, Vol. 2011, 2011, pp. 1-5.

[10]   H. Funato, S. Oda, J. Yokofujita, H. Igarashi and M. Kuroda, “Fasting and High-Fat Diet Alter Histone Deacetylase Expression in the Medial Hypothalamus,” PLoS One, Vol. 6, No. 4, 2011, Article ID: e18950.

[11]   M. M. Mihaylova, D. S. Vasquez, K. Ravnskjaer, P. D. Denechaud, R. T. Yu, J. G. Alvarez, M. Downes, R. M. Evans, M. Montminy and R. J. Shaw, “Class IIa Histone Deacetylases Are Hormone-Activated Regulators of FOXO and Mammalian Glucose Homeostasis,” Cell, Vol. 145, No. 4, 2011, pp. 607-621.

[12]   I. Milagre, M. J. Nunes, M. Moutinho, I. Rivera, A. Fuso, S. Scarpa, M. J. Gama and E. Rodrigues, “ChromatinModifying Agents Increase Transcription of CYP46A1, a Key Player in Brain Cholesterol Elimination,” Journal of Alzheimer’s Disease, Vol. 22, No. 4, 2010, pp. 12091221.

[13]   S. V. Chittur, N. Sangster-Guity and P. J. McCormick, “Histone Deacetylase Inhibitors: A New Mode for Inhibition of Cholesterol Metabolism,” BMC Genomics, Vol. 9, No. 507, 2008, pp. 1-14.

[14]   A. B. Crujeiras, E. Goyenechea, I. Abete, M. Lage, M. C. Carreira, J. A. Martínez and F. F. Casanueva, “Weight Regain after a Diet-Induced Loss Is Predicted by Higher Baseline Leptin and Lower Ghrelin Plasma Levels,” Journal of Clinical Endocrinology and Metabolism, Vol. 95, No. 11, 2010, pp. 5037-5044.

[15]   K. A. Boyd, D. G. O’Donovan, S. Doran, J. Wishart, I. M. Chapman, M. Horowitz and C. Feinle, “High-Fat Diet Effects on Gut Motility, Hormone, and Appetite Responses to Duodenal Lipid in Healthy Men,” American Journal of Physiology and Gastrointestinal Liver Physiology, Vol. 284, No. 2, 2003, pp. G188-G196.

[16]   T. J. Little and C. Feinle-Bisset, “Effects of Dietary Fat on Appetite and Energy Intake in Health and Obesity— Oral and Gastrointestinal Sensory Contributions,” Physiology & Behavior, Vol. 104, No. 4, 2011, pp. 613-620.

[17]   C. Br?ns, C. B. Jensen, H. Storgaard, N. J. Hiscock, A. White and J. S. Appel, “Impact of Short-Term High-Fat Feeding on Glucose and Insulin Metabolism in Young Healthy Men,” Journal Physiology, Vol. 587, No. 10, 2009, pp. 2387-2397.

[18]   C. Pil-Byung, Y. Shin-Hwan, K. Il-Gyu, H. Gwang-Suk, Y. Jae-Hyun and L. Han-Joon, “Effects of Exercise Program on Appetite-Regulating Hormones, Inflammatory Mediators, Lipid Profiles, and Body Composition in Healthy Men,” Journal Sports Medical Physical Fitness, Vol. 51, No. 4, 2011, pp. 654-663.

[19]   K. Porikos and S. Hagamen, “Is Fiber Satiating? Effects of a High Fiber Preload on Subsequent Food Intake of Normal-Weight and Obese Young Men,” Appetite, Vol. 7, No. 2, 1986, pp. 153-162.

[20]   R. A. Samra and G. H. Anderson, “Insoluble Cereal Fiber Reduces Appetite and Short-Term Food Intake and Glycemic Response to Food Consumed 75 Min Later by Healthy Men,” American Journal of Clinical Nutrition, Vol. 86, No. 4, 2007, pp. 972-979.

[21]   S. Ibrugger, M. Kristensen, M. S. Mikkelsen and A. Astrup, “Flaxseed Dietary Supplements for Suppression of Appeptite and Food Intake,” Appetite, Vol. 58, No. 2, 2012, pp. 490-495.

[22]   J. Darzi, G. S. Frost and M. D. Robertson, “Do SCFA Have a Role in Appetite Regulation?” Proceedings of the Nutrition Society, Vol. 70, No. 1, 2011, pp. 119-128.

[23]   H. V. Lin, A. Frassetto, E. J. Kowalik, A. R. Nawrocki and M. M. Lu, “Butyrate and Propionate Protect against Diet-Induced Obesity and Regulate Gut Hormones via Free Fatty Acid Receptor 3-Independent Mechanisms,” PLoS One, Vol. 7, No. 4, 2012, Article ID: e35240.

[24]   B. W. Smith and L. A. Adams, “Non-Alcoholic Fatty Liver Disease,” Critical Review Clinical Laboratory Science, Vol. 48, No. 3, 2011, pp. 97-113.

[25]   H.-S. Lai, W.-H. Lin, P.-R. Chen, H.-C. Wu, P.-H. Lee and W.-J. Chen, “Effects of a High-Fiber Diet on Hepatocyte Apoptosis and Liver Regeneration after Partial Hepatectomy in Rats with Fatty Liver,” Journal of Parenteral & Enteral Nutrition, Vol. 29, No. 6, 2005, pp. 401-407.

[26]   M. Sleeth, A. Psichas and G. Frost, “Weight Gain and Insulin Sensitivity: A Role for the Glycaemic Index and Dietary Fibre?” British Journal of Nutrition, Vol. 109, No. 9, 2012, pp. 1539-1541.

[27]   N. Rafiq and Z. N. Younossi, “Effects of Weight Loss on NonalcoholicFatty Liver,” Seminars in Liver Disease, Vol. 28, No. 4, 2008, pp. 427-433.

[28]   M. S. Jansen, S. C. Nagel, J. P. Miranda, E. K. Lobenhofer, C. A. Afshari and D. P. McDonnell, “Short-Chain Fatty Acids Enhance Nuclear Receptor Activity through Mitogen-Activated Protein Kinase Activation and Histone Deacetylase Inhibition,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 101, No. 18, 2004, pp. 7199-7204.

[29]   M. V. Liberato, A. S. Nascimento, S. D. Ayers, J. Z. Lin, A. Cvoro and R. L. Silveira, “Medium Chain Fatty Acids Are Selective Peroxisome Proliferator Activated Receptor γ Activators and Pan-PPAR Partial Agonists,” PLoS One, Vol. 7, No. 5, 2012, Article ID: e36297.

[30]   F. Schroeder, A. D. Petrescu, H. Huang, B. P. Atshaves, A. L. McIntosh and G. G. Martin, “Role of Fatty Acid Binding Proteins and Long Chain Fatty Acids in Modulating Nuclear Receptors and Gene Transcription,” Lipids, Vol. 43, No. 1, 2008, pp. 1-17.

[31]   D. Bosco, A. Fava, M. Plastino, T. Montalcini and A. Pujia, “Possible Implications of Insulin Resistance and Glucose Metabolism in Alzheimer’s Disease Pathogenesis,” Journal of Cell and Molecular Medicine, Vol. 15, No. 9, 2011, pp. 1807-1821.

[32]   C. L. Masters, G. Simms, N. A. Weinman, G. Multhaup and K. Beyreuther, “Amyloid Plaque Core Protein in Alzheimer’s Disease and Down’s Syndrome,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 82, No. 12, 1985, pp. 4245-4249.

[33]   S. Bodovitz and W. L. Klein, “Cholesterol Modulates αSecretase Cleavage of Amyloid Precursor Protein,” Journal of Biological Chemistry, Vol. 271, No. 8, 1996, pp. 4436-4440.

[34]   R. Vassar, B. D. Bennett, S. Babu-Khan, S. Kahn, E. A. Mendiaz, P. Denis, et al., “Beta-Secretase Cleavage of Alzheimer’s Amyloid Precursor Protein by the Transmembrane Aspartic Protease BACE,” Science, Vol. 286, No. 5540, 1999, pp. 735-741.

[35]   F. S. Esch, P. S. Keim, E. C. Beattie, R. W. Blacher, A. R. Culwell, T. Oltersdorf, D. McClure and P. J. Ward, “Cleavage of Amyloid Beta Peptide during Constitutive Processing of Its Precursor,” Science, Vol. 248, No. 4959, 1990, pp. 1122-1124.

[36]   S. Soriano, A. S. Chyung, X. Chen, G. B. Stokin, V. M. Lee and E. H. Koo, “Expression of β-Amyloid Precursor Protein-CD3γ Chimeras to Demonstrate the Selective Generation of Amyloid β1-40 and Amyloid β1-42 Peptides within Secretory and Endocytic Compartments,” Journal of Biological Chemistry, Vol. 274, No. 45, 1999, pp. 32295-32300.

[37]   H. Hayashi, N. Kimura, H. Yamagauchi, K. Hasegawa, T. Yokoseki, M. Shibata, N. Yamamoto, M. Michikawa, Y. Yoshikawa, K. Terao, K. Matsuzaki, C. A. Lemere, D. J. Selkoe, H. Naiki and K. Yanagisawa, “A Seed for Alzheimer Amyloid in the Brain,” Journal of Neuroscience, Vol. 24, No. 20, 2004, pp. 4894-4902. 2004

[38]   J. Bieschke, Q. Zhang, E. T. Powers, R. A. Lerner and J. W. Kelly, “Oxidative Metabolites Accelerate Alzheimer’s Amyloidogenesis by a Two Step Mechanism, Eliminating the Requirement for Nucleation,” Biochemistry, Vol. 44, No. 13, 2005, pp. 4977-4983.

[39]   A. E. Roher, Y. M. Kuo, K. M. Kokjohn, M. R. Emmerling and S. Gracon, “Amyloid and Lipids in the Pathology of Alzheimer’s Disease,” Amyloid, Vol. 6, No. 2, 1998, pp. 136-145.

[40]   Y. M. Kuo, M. R. Emmerling, C. L. Bisgaier, A. D. Essenburg, H. C. Lampert, D. Drumm and A. E. Roher, “Elevated Low Density Lipoprotein in Alzheimer’s Disease Correlates with Brain Aβ 1-42 Levels,” Biochemical and Biophysical Research Communications, Vol. 252, No. 3, 1998, pp. 711-715.

[41]   A. Merched, Y. Xia, S. Visvikis, J. M. Serrot and G. Siest, “Decreased High Density Lipoprotein Cholesterol and Serum Apolipoprotein AI Concentrations Are Highly Correlated with the Severity of Alzheimer’s Disease,” Neurobiology of Aging, Vol. 21, No. 1, 2000, pp. 27-30.

[42]   M. Dean, Y. Hamon and G. Chimini, “The Human ATPBinding Cassette (ABC) Transporter Superfamily,” Journal of Lipid Research, Vol. 42, No. 7, 2001, pp. 10071017.

[43]   D. H. Mauch, K. Nagler, S. Shumacher, C. Goritz, E. C. Muller, A. Otto and F. W. Pfreiger, “CNS Synaptogenesis Promoted by Glia-Derived Cholesterol,” Science, Vol. 294, No. 5545, 2001, pp. 1354-1357.

[44]   R. P. Koldamova, I. M. Lefterov, M. D. Ikonomovic, J. Skoko, P. I. Lefterov, B. A. Isanski, S. T. DeKosky and J. S. Lazo, “22R-Hydroxy Cholesterol and 9-cis-Retinoic Acid Induce ATP Binding Cassette Transporter A1 Expression and Cholesterol Efflux in Brain Cells and Decrease Amyloid β Secretion,” Journal of Biological Chemistry, Vol. 278, No. 15, 2003, pp. 13244-13256.

[45]   S. E. Wahrle, H. Jiang, M. Parasadanian, J. Legleiter, X. Han, J. D. Fryer, T. Kowalewski and D. M. Holtzman, “ABCA1 Is Required for Normal Central Nervous System ApoE Levels and for Lipidation of Astrocyte-Secreted ApoE,” Journal of Biological Chemistry, Vol. 279, No. 39, 2004, pp. 40987-40993.

[46]   A. Sundqvist and J. Ericsson, “Transcription Dependent Degradation Controls the Stability of the SREBP Family of Transcription Factors,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 100, No. 24, 2003, pp. 13833-13838.

[47]   R. Ehehalt, P. Keller, C. Haass, C. Thiele and K. Simons, “Amyloidogenic Processing of the Alzheimer’s β-Amyloid Precursor Protein Depends on Lipid Rafts,” Journal of Cell Biology, Vol. 160, No. 1, 2003, pp. 113-123.

[48]   K. S. Vetrivel, H. Cheng, W. Lin, T. Sakurai, T. Li, N. Nakina, P. C. Wong, H. Xu and G. Thinakaran, “Association of γ-Secretase with Lipid Rafts in Post Golgi and Endosome Membranes,” Journal of Biological Chemistry, Vol. 279, No. 43, 2004, pp. 44945-44954.

[49]   M. Simons, P. Keller, B. DeStrooper, K. Beyreuther, C. G. Dotti and K. Simons, “Cholesterol Depletion Inhibits the Generation of βamyloid in Hippocampal Neurons,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 95, No. 11, 1998, pp. 6460-6464.

[50]   E. Kojro, G. Gimpl, S. Lammich, W. M?rz and F. Fahrenholz, “Low Cholesterol Stimulates the Nonamyloidogenic Pathway by Its Effect on the α-Secretase ADAM 10,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 98, No. 10, 2001, pp. 5815-5820.

[51]   M. O. W. Grimm, H. S. Grim, H. J. Patzold, E. G. Zinser, R. Halomen, M. Durering, J. A. Tsch?pe, B. De Strooper, U. Müller, J. Shen and T. Hartmann, “Regulation of Cholesterol and Sphingomyelin Metabolism by Amyloid-β and Presenilin,” Nature Cell Biology, Vol. 7, No. 11, 2005, pp. 1118-1123.

[52]   A. Miyazaki, M. Sakai, Y. Sakamoto and S. Horiuchi, “Acyl-Coenzyme A: Cholesterol Acyl Transferase Inhibitors for Controlling Hypercholesterolemia and Atherosclerosis,” Current Opinion in Investigational Drugs, Vol. 4, No. 9, 2003, pp. 1095-1099.

[53]   L. Puglielli, B. C. Ellis, L. A. Ingano and D. M. Kovacs, “Role of Acyl-Coenzyme A: Cholesterol Acyl Transferase Activity in the Processing of Amyloid Precursor Protein,” Journal of Molecular Neuroscience, Vol. 24, No. 1, 2004, pp. 93-96.

[54]   B. Hutter-Paier, H. J. Huttunen, L. Puglielli, C. B. Eckman, D. Y. Kim, A. Hofmeister, R. D. Moir, S. B. Domnitz, M. P. Frosch, M. Windisch and D. M. Kovacs, “The ACAT Inhibitor CP-113, 818 Markedly Reduces Amyloid Pathology in a Mouse Model of Alzheimer’s Disease,” Neuron, Vol. 44, No. 2, 2004, pp. 227-238.

[55]   D. Cao, K. Fukuchi, H. Q. Wan, H. Kim and L. Li, “Lack of the LDL Receptor Aggravates Learning Deficits and Amyloid Deposits in Alzheimer’s Disease Transgenic Mice,” Neurobiology of Aging, Vol. 27, No. 11, 2006, pp. 1632-1643.

[56]   W. Retz, J. Thorne, N. Durany, A. Harsanyi, P. Retz-Junginger, J. Kornhuber, P. Riederer and M. Rosler, “Potential Genetic Markers of Sporadic Alzheimer’s Dementia,” Psychiatric Genetics, Vol. 11, No. 3, 2001, pp. 115-122.

[57]   C. V. Zerbinatti, S. E. Wahrle, H. Kim, J. A. Cam, K. Bates, S. M. Paul, D. M. Holtzman and G. Bu, “Apolipoprotein E and Low Density Lipoprotein Receptor Related Protein Facilitate Intraneuronal Aβ42 Accumulation in Amyloid Model Mice,” Journal of Biological Chemistry, Vol. 281, No. 47, 2006, pp. 36180-36186.

[58]   R. Deane, R. Bell, A. Sagare and B. V. Zlokovic, “Clearance of Amyloid-Beta Peptide Across the Blood-Brain Barrier: Implication for Therapies in Alzheimer’s Disease,” Central Nervous System & Neurology Disorder-Drug Targets, Vol. 8, No. 1, 2009, pp. 16-30.

[59]   S. Jaeger and C. J. Pietrzik, “Functional Role of Lipoprotein Receptors in Alzheimer’s Disease,” Current Alzheimer’s Research, Vol. 5, No. 1, 2008, pp. 15-25.

[60]   M. P. Marzolo and G. J. Bu, “Lipoprotein Receptors and Cholesterol in APP Trafficking and Proteolytic Processing, Implications for Alzheimer’s Disease,” Seminars in Cell & Developmental Biology, Vol. 20, No. 2, 2009, pp. 191200. semcdb.2008.10.005

[61]   E. Waldron, S. Jaeger and C. U. Pietrzik, “Functional Role of the Low Density Lipoprotein Receptor Related Protein in Alzheimer’s Disease,” Neurodegeneration Disease, Vol. 3, No. 4, 2006, pp. 233-238.

[62]   I. Bjorkhem and S. Meaney, “Brain Cholesterol: Long Secret Life behind a Barrier,” Arteriosclerosis, Thrombosis and Vascular Biology, Vol. 24, No. 5, 2004, pp. 806-815.

[63]   I. Bjorkhem, U. Diczfalusy and D. Lutjohann, “Removal of Cholesterol from Extrahepatic Sources by Oxidative Mechanisms,” Current Opinion in Lipidology, Vol. 10, No. 2, 1999, pp. 161-165.

[64]   J. M. Dietschy and S. D. Turley, “Cholesterol Metabolism in the Brain,” Current Opinion in Lipidology, Vol. 12, No. 2, 2001, pp. 105-112.

[65]   J. E. Vance, H. Hayashi and B. Karten, “Cholesterol Homeostasis in Neurons and Glial Cells,” Seminar in Cell & Developmental Biology, Vol. 16, No. 2, 2005, pp. 193-212.

[66]   U. Funfschilling, G. Saher, L. Xiao, W. Mobius and K. A. Nave, “Survival of Adult Neurons Lacking Cholesterol Synthesis in Vivo,” BMC Neuroscience, Vol. 8, No. 1, 2007, pp. 1-9.

[67]   G. Saher, B. Brugger, C. Lappe-Sietke, W. Mobius, R. Tozawa, M. C. Wehr, F. Wieland, F. Ishibashi and K. Nave, “High Cholesterol Level Is Essential for Myelin Membrane Growth,” Nature Neuroscience, Vol. 8, No. 4, 2005, pp. 468-475.

[68]   F. W. Pfreiger, “Cholesterol Homeostasis and Function in Neurons of the Central Nervous System,” Cellular and Molecular Life Sciences, Vol. 60, No. 6, 2003, pp. 11581171.

[69]   E. G. Lund, J. M. Guileyard and D. W. Russell, “cDNA Cloning of Cholesterol 24-Hydroxylase, a Mediator of Cholesterol Homeostasis in the Brain,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 96, No. 13, 1999, pp. 7238-7243. 7238

[70]   D. Lutjohann, O. Breuner, G. Ahlberg, I. Nemesno, A. Siden, U. Diczfalusy and I. Bjorkhem, “Cholesterol Homeostasis in Human Brain: Evidence for an Age Dependent Flux of 24S-Hydroxycholesterol from the Brain into the Liver,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 93, No. 18, 1996, pp. 9799-9804.

[71]   D. Lutjohann, A. Papassotiropoulos, I. Bjorkhem, S. Locatelli, M. Bagli and R. D. Oehring, “Plasma 24S-Hydroxycholesterol Is Increased in Alzheimer’s and Vascular Demented Persons,” Journal of Lipid Research, Vol. 41, No. 2, 2000, pp. 195-198.

[72]   A. Papassotiropoulos, D. Lutjohann, M. Bagli, M. Locatelli, F. Jessen, M. L. Rao, W. Maier, I. Bjürkhem, K. von Bergmann and R. Heun, “Plasma 24S-Hydroxycholesterol: A Peripheral Indicator of Neuronal Degeneration and Potential State Marker for Alzheimer’s Disease,” Neuroreport, Vol. 11, No. 9, 2000, pp. 1959-1962.

[73]   A. Papassotiropoulos, D. Lütjohann, M. Bagli, S. Locatelli, F. Jessen, R. Buschfort, U. Ptok, I. Bjorkhem, K. von Bergmann and R. Heun, “24S-Hydroxycholesterol in Cerebrospinal Fluid Is Elevated in Early Stages of Dementia,” Journal of Psychiatric Research, Vol. 36, No. 1, 2002, pp. 27-32.

[74]   H. Jick, G. I. Zornberg, S. S. Jick, S. Seshadri and D. A. Drachman, “Statins and the Risk of Dementia,” The Lancet, Vol. 356, No. 9242, 2000, pp. 1627-1631.

[75]   B. Wolozin, W. Kellman, P. Rousseau, C. G. Celessia and G. Siegel, “Decreased Prevalence of Alzheimer’s Disease Associated with 3-Hydroxy-3methyl-Glutaryl Coenzyme: A Reductase Inhibitors,” JAMA Neurology, Vol. 57, No. 10, 2000, pp. 1439-1143.

[76]   N. B. Chauhan, G. J. Siegel and D. L. Feinstein, “Effects of Lovastatin and Pravastatin on Amyloid Processing and Inflammatory Response in TgCRND8 Brain,” Neurochemical Research, Vol. 29, No. 10, 2004, pp. 1887-1911.

[77]   S. S. Petanceska, S. DeRosa, V. Olm, N. Diaz, A. Sharma, T. Thomas-Bryant, K. Duff, M. Pappolla and L. M. Refolo, “Statin Therapy for Alzheimer’s Disease, Will It Work?” Journal of Molecular Neuroscience, Vol. 19, No. 1-2, 2002, pp. 155-161.

[78]   L. M. Refolo, B. Malester, J. LaFrancois, T. Bryant-Thomas, R. Wang, G. S. Tint, K. Sambamurti, K. Duff and M. A. Pappolla, “Hypercholesterolemia Accelerates the Alzheimer’s Amyloid Pathology in a Transgenic Mouse Model,” Neurobiology of Disease, Vol. 7, No. 4, 2000, pp. 321-331.

[79]   L. M. Refollo, M. A. Papolla, J. LaFrancois, B. Malester, S. D. Schmidt, T. Thomas-Bryant, G. S. Tint, R. Wang, M. Mercken, S. S. Petanceska and K. E. Duff, “A Cholesterol Lowering Drug Reduces β-Amyloid Pathology in a Transgenic Mouse Model of Alzheimer’s Disease,” Neurobiology of Disease, Vol. 8, No. 5, 2001, pp. 890-899.

[80]   K. Fassbender, M. Simons, C. Bergmann, M. Stroick, D. Lutjohann, P. Keller, H. Runz, S. Kuhl, T. Bertsch, K. von Bergmann, M. Hennerici, K. Beyreuther and T. Hartmann, “Simvastatin Strongly Reduces Levels of Alzheimer’s Disease β-Amyloid Peptides Aβ 42 and Aβ 40 in Vitro and in Vivo,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 98, No. 10, 2001, pp. 5856-5861.

[81]   I. J. Martins, E. Hone, J. K. Foster, S. I. Sunram-Lea, A. Gnjec, S. J. Fuller, D. Nolan, S. E. Gandy and R. N. Martins, “Apolipoprotein E, Cholesterol Metabolism, Diabetes and the Convergence of Risk Factors for Alzheimer’s Disease and Cardiovascular Disease,” Molecular Psychiatry, Vol. 11, No. 8, 2006, pp. 721-736. mp.4001854

[82]   I. J. Martins, T. Berger, M. J. Sharman, G. Verdile, S. J. Fuller and R. N. Martins, “Cholesterol Metabolism and Transport in the Pathogenesis of Alzheimer’s Disease,” Journal of Neurochemistry, Vol. 111, No. 6, 2009, pp. 1275-1308.

[83]   H. Chen, S. M. Zhang, M. A. Hernan, W. C. Willet and A. Ascherio, “Diet and Parkinson’s Disease: A Potential Role of Dairy Products in Men,” Annals of Neurology, Vol. 52, No. 6, 2002, pp. 793-801.

[84]   H. Chen, E. O’Reilly, M. L. McCullough, C. Rodriguez, M. A. Schwarzschild, E. E Calle, M. J. Thun and A. Ascherio, “Consumtion of Dairy Products and Risks of Parkinson’s Disease,” American Journal of Epidemiology, Vol. 165, No. 9, 2007, pp. 998-1006.

[85]   M. Park, G. W. Ross, H. Petrovitch, L. R. White, K. H. Masaki, J. S. Nelson, C. M. Tanner , J. D. Curb, P. L. Blanchette and R. D. Abbott, “Consumption of Milk and Calcium in Midlife and the Future Risk of Parkinson’s Disease,” Neurology, Vol. 64, No. 6, 2005, pp. 1047-1051. BF

[86]   G. Logroscino, K. Marder, L. Cote, M. X. Tang, S. Shea and R. Mayeux, “Dietary Lipids and Antioxidants in Parkinson’s Disease: A Population-Based, Case-Control Study,” Annals of Neurology, Vol. 39, No. 1, 1996, pp. 89-94.

[87]   M. Barichella, E. Cereda and G. Pezzoli, “Major Nutritional Issues in the Management of Parkinson’s Disease,” Movement Disorders, Vol. 24, No. 13, 2009, pp. 1881-1892.

[88]   R. A. Alcalay, Y. Gu, H. Mejia-Santana, L. Cote, K. S. Marder and N. Scarmeas, “Mediterranean Diet Adherence and Parkinson’s Disease,” Movement Disorders, Vol. 27, No. 6, 2012, pp. 771-774.

[89]   K. Marder, Y. Gu, S. Eberly, C. M. Tanner, N. Scarmeas, D. Oakes and I. Shoulson, “Relationship of Mediterranean Diet and Caloric Intake to Phenoconversion in Huntington Disease,” JAMA Neurology, Vol. 70, No. 11, 2013, pp. 1382-1388.

[90]   A. Trejo, R. M. Tarrats, M. E. Alonso, M. C. Boll, A. Ochoa and L. Velásquez, “Assessment of the Nutrition Status of Patients with Huntington’s Disease,” Nutrition, Vol. 20, No. 2, 2004, pp. 192-196.

[91]   M. J. Dowie, E. L. Scotter, E. Molinari and M. Glass, “The Therapeutic Potential of G-Protein Coupled Receptors in Huntington’s Disease,” Pharmacology & Therapeutics, Vol. 128, No. 2, 2010, pp. 305-323. pharmthera.2010.07.008

[92]   L. Wang, B. Martins, R. Brenneman, L. M. Lutrell and S. Maudsley, “Allosteric Modulators of G Protein-Coupled Receptors: Future Therapeutics for Complex Physiological Disorders,” Journal of Pharmacology and Experimental Therapeutics, Vol. 331, No. 2, 2009, pp. 340-348.

[93]   E. J. Goetzl, “Diverse Pathways for Nuclear Signaling by G Protein-Coupled Receptors and Their Ligands,” FASEB Journal, Vol. 21, No. 3, 2007, pp. 638-642.

[94]   R. Alemany, J. S. Perona, J. M. Sánchez-Dominguez, E. Montero, J. Canizares, R. Bressani, P. V. Escribá and V. Ruiz-Gutierrez, “G Protein-Coupled Receptor Systems and Their Lipid Environment in Health Disorders during Aging,” Biochimica et Biophysica Acta, Vol. 1768, No. 4, 2007, pp. 964-975. bbamem.2006.09.024

[95]   F. Gobeil, A. Fortier, T. Zhu, M. Bossolasco, M. Leduc, M. Grandbois, N. Heveker, G. Bkaily, S. Chemtob and D. Barbaz, “G-Protein-Coupled Receptors Signalling at the Cell Nucleus: An Emerging Paradigm,” Canadian Journal of Physiology and Pharmacology, Vol. 84, No. 3-4, 2006, pp. 287-297.

[96]   Y. D. Paila and A. Chattopadhyay, “Membrane Cholesterol in the Function and Organization of G-Protein Coupled Receptors,” Subcellular Biochemistry, Vol. 51, 2010, pp. 439-466.

[97]   A. K. Gupta, C. G. Savopoulos, J. Ahuja and A. I. Hatzitolios, “Role of Phytosterols in Lipid Lowering: Current Perspectives,” Quarterly Journal of Medicine, Vol. 104, No. 4, 2011, pp. 301-308.

[98]   F. Gomez-Pinilla, “Brain Foods: The Effects of Nutrients on Brain Function,” Nature Reviews Neuroscience, Vol. 9, No. 7, 2008, pp. 568-578.

[99]   S. B. Patel, “Plant Sterols and Stanols: Their Role in Health and Disease,” Journal of Clinical Lipidology, Vol. 2, No. 2, 2008, pp. S11-S19.

[100]   R. E. Ostlund, “Phytosterols in Human Nutrition,” Annual Review in Nutrition, Vol. 22, 2002, pp. 533-549.

[101]   S. P. Choudhary and L. S. Tran, “Phytosterols: Perspectives in Human Nutrition and Clinical Therapy,” Current Medicinal Chemistry, Vol. 18, No. 29, 2011, pp. 4557-4567.

[102]   T. Vanmierlo, J. Popp, H. Kolsch, S. Friedrichs, F. Jessen, B. Stoffel-Wagner, T. Bertsch , T. Hartmann, W. Maier, K. von Bergmann, H. Steinbusch, M. Mulder and D. Lutjohann, “The Plant Sterol Brassicasterol as Additional CSF Biomarker in Alzheimer’s Disease,” Acta Psychiatrica Scandinavica, Vol. 124, No. 3, 2011, pp. 184-192.

[103]   I. Demonty, R. T. Ras, H. C. M. van der Knaap, S. M. Guus, J. E. Duchateau, L. Meijer, P. L. Zock, J. M. Geleijnse and E. A. Trautwein, “Continuous Dose-Response Relationship of the LDL-Cholesterol-Lowering Effect of Phytosterol Intake,” Journal of Nutrition, Vol. 139, No. 2, 2009, pp. 271-284.

[104]   M. K. Gul and S. Amar, “Sterols and the Phytosterol Content in Oilseed Rape (Brassica napus L.),” Journal of Cell and Molecular Biology, Vol. 5, No. 2, 2006, pp. 71-79.

[105]   P. J. Jansen, D. Lütjohann, K. Abildayeva, T. Vanmierlo, T. Plosch, J. Plat, K. von Bergmannb, A. K. Groene, F. C. S. Ramaekersa, F. Kuipersc and M. Mulder, “Dietary Plant Sterols Accumulate in the Brain,” Biochimica et Biophysica Acta, Vol. 1761, No. 4, 2006, pp. 445-453.

[106]   T. Vanmierlo, O. Weingartner, S. van der Pol, C. Husche, A. Kerksiek, S. Friedrichs, E. Sijbrands, H. Steinbusch, M. Grimm, T. Hartmann, U. Laufs, M. Bohm, H. E. de Vries, M. Mulder and D. Lütjohann, “Dietary Intake of Plant Sterols Stably Increases Plant Sterol Levels in Themurine Brain,” Journal of Lipid Research, Vol. 53, No. 4, 2012, pp. 726735.

[107]   D. Lütjohann, A. Brzezinka, E. Barth, D. Abramowski, M. Staufenbiel, K. von Bergmann, K. Beyreuther, G. Multhaup and T. A. Bayer, “Profile of Cholesterol-Related Sterols in Agedamyloid Precursor Protein Transgenic Mouse Brain,” Journal of Lipid Research, Vol. 43, No. 7, 2002, pp. 10781085.

[108]   C. B. Fricke, M. Schroder, M. Poulsen , K. von Bergmann, I. Wester, I. Knudsen, A. Mortensen and D. Lütjohann, “Increased Plant Sterol and Stanol Levels in Brain of Watanabe Rabbits Fed Rapeseed Oil Derived Plant Sterol or Stanol Esters,” British Journal of Nutrition, Vol. 98, No. 5, 2007, pp. 890-899.

[109]   C. C. Smith, P. J. Hyatt, L. Stanyer and D. J. Betteridge, “Platelet Secretion of Beta-Amyloid Is Increased in Hypercholesterolaemia,” Brain Research, Vol. 896, No. 1-2, 2001, pp. 161-164.

[110]   C. Shi, J. Liu, F. M. Wu, X. M. Zhu, D. T. Yew and J. Xu, “β-Sitosterol Inhibits High Cholesterol-Induced Platelet β-Amyloid Release,” Journal of Bioenergetics and Biomembranes, Vol. 43, No. 6, 2011, pp. 691-697.

[111]   M. Katzi, I. Bartov, P. Budowski and A. Bondi, “Inhibition of Cholesterol Deposition in Livers of Mice Fed Phytosterols in Short-Term Experiments,” Journal of Nutrtion, Vol. 100, No. 10, 1970, pp. 1141-1148.

[112]   D. S. MacKay and P. Jones, “Limitations of Lathosterol to plant Sterol Ratios and Serum Plant Sterols as Surrogate Markers for Cholesterol Absorption during Plant Sterol Supplementation,” Nutrition, Metabolism and Cardiovascular Diseases, Vol. 22, No. 9, 2012, p. e21.

[113]   T. A. Miettinen, H. Gylling and M. J. Nissinen, “The Role of Serum Non-Cholesterol Sterols as Surrogate Markers of Absolute Cholesterol Synthesis and Absorption,” Nutrition, Metabolism and Cardiovascular Disease, Vol. 21, No. 10, 2011, pp. 765-769.

[114]   E. Misawa, M. Tanaka, K. Nomaguchi, K. Nabeshima, M. Yamada, T. Toida and K. Iwatsuki, “Oral Ingestion of Aloe Vera Phytosterols Alters Hepatic Gene Expression Profiles and Ameliorates Obesity-Associated Metabolic Disorders in Zucker Diabetic Fatty Rats,” Journal of Agricultural and Food Chemistry, Vol. 60, No. 11, 2012, pp. 2799-2806.

[115]   T. M. Jeitner, I. Voloshyna and A. B. Reiss, “Oxysterol Derivatives of Cholesterol in Neurodegenerative Disorders,” Current Medicinal Chemistry, Vol. 18, No. 10, 2011, pp. 1515-1525.
http://dx. doi. org/10. 2174/092986711795328445

[116]   V. Leoni, “Oxysterols as Markers of Neurological Disease—A Review,” Scandinavian Journal of Clinical & Laboratory Investigation, Vol. 69, No. 1, 2009, pp. 22-25.

[117]   A. Otaegui-Arrazola, M. Menéndez-Carreno, D. Ansorena and I. Astiasarán, “Oxysterols: A World to Explore,” Food and Chemical Toxicology, Vol. 48, No. 12, 2010, pp. 32893303.

[118]   K. Yasutake, M. Kohjima, M. Nakashima, K. Kotoh, M. Nakamuta and M. Enjoji, “Nutrition Therapy for Liver Diseases Based on the Status of Nutritional Intake,” Gastroenterology Research and Practice, Vol. 2012, 2012, Article ID: 859697.

[119]   R. Brauner, C. Johannes, F. Ploess, F. Bracher and R. L. Lorenz, “Phytosterols Reduce Cholesterol Absorption by Inhibition of 27-Hydroxycholesterol Generation, Liver X Receptor α Activation and Expression of the Basolateral Sterol Exporter ATP-Binding Cassette A1 in Caco-2 Enterocytes,” Journal of Nutrition, Vol. 142, No. 6, 2012, pp. 981-989.

[120]   Q. Chen, H. Gruber, C. Pakenham, W. M. N. Ratnayake and K. A. Scoggan, “Dietary Phytosterols and Phytostanols Alter the Expression of Sterol-Regulatory Genes in SHRSP and WKY inbred Rats,” Annals of Nutrition & Metabolism, Vol. 55, No. 4, 2009, pp. 341-350.

[121]   N. S. Sabeva, C. M. McPhaul, X. G. Li and T. J. Cory, D. J. Feola and G. A. Graf, “Phytosterols Differentially Influence ABC transporter Expression, Cholesterol Efflux and Inflammatory Cytokine Secretion in Macrophage Foam Cells,” Journal of Nutritional Biochemistry, Vol. 22, No. 8, 2011, pp. 777-783.

[122]   C. P. Chuu, “Modulation of Liver X Receptor Signaling as a Prevention and Therapy for Colon Cancer,” Medical Hypotheses, Vol. 76, No. 5, 2011, pp. 697-699.

[123]   E. Ikonen, “Mechanisms for Cellular Cholesterol Transport: Defects and Human Disease,” Physiological Reviews, Vol. 86, No. 4, 2006, pp. 1237-1261.

[124]   I. J. Martins, A. C. Wilson, W. L. F. Lim, S. M. Laws, S. J. Fuller and R. N. Martins, “Sirtuin 1 Mediates the Obesity Induced Risk of Common Degenerative Diseases: Alzheimer’s Disease, Coronary Artery Disease and Type 2 Diabetes,” Health, Vol. 4, No. 12A, 2012, pp. 1-9.

[125]   S. V. Chochina, N. A. Avdulov, U. Igbavboa, J. P. Cleary, E. O. O’Hare and W. G. Wood, “Amyloid Beta-Peptide1-40 Increases Neuronal Membrane Fluidity: Role of Cholesterol and Brain Region,” Journal of Lipid Research, Vol. 42, No. 8, 2001, pp. 1292-1297.

[126]   G. P. Eckert, N. J. Cairns, A. Maras, W. F. Gattaf and W. E. Muller, “Cholesterol Modulates the Membrane-Disordering Effects of Beta-Amyloid Peptides in the Hippocampus: Specific Changes in Alzheimer’s Disease,” Dementia and Geriatric Cognitive Disorders, Vol. 11, 2000, pp. 181-186.

[127]   N. V. Koudinov, K. Anatol, T. T. Berezov and A. R. Koudinov, “Amyloid Beta, Neural Lipids, Cholesterol and Alzheimer’s Disease,” Neurobiology of Lipids, Vol. 1, No. 6, 2003, pp. 28-33.

[128]   K. Hac-Wydro, A. Zajac and P. Dynarowicz-Latka, “The Influence of Plant Stanol on Phospholipids Monolayers— The Effect of Phospholipid Structure,” Journal of Colloid and Interface Science, Vol. 360, No. 2, 2011, pp. 681-689.

[129]   K. H. Wydro, P. Wydro, A. Jogoda and J. Kapusta, “The Study on the Interaction between Phytosterols and Phospholipids in Model Membranes,” Chemistry and Physics of Lipids, Vol. 150, No. 1, 2007, pp. 22-34.

[130]   S. R. Ji, Y. Wu and S. F. Sui, “Study of Beta-Amyloid Peptide (Abeta40) Insertion into Phospholipid Membranes Using Monolayer Technique,” Biochemistry, Vol. 67, No. 11, 2002, pp. 1283-1288.

[131]   K. Hac-Wydro, “The Replacement of Cholesterol by Phytosterols and the Increase of Total Sterol Content in Model Erythrocyte Membranes,” Chemistry and Physics of Lipids, Vol. 163, No. 7, 2010, pp. 689-697.

[132]   A. K. Bhattacharyya and D. A. Eggen, “Effect of Dietary Cholesterol Level on Plasma Campesterol Concentration in Rhesus Monkeys,” Annals of Nutrition and Metabolism, Vol. 31, No. 5, 1987, pp. 276-281.

[133]   E. Bartnikowska, “Biological Activities of Phytosterols with Particular Attention to Their Effects on Lipid Metabolism,” Polish Journal Food & Nutrition Science, Vol. 59, No. 2, 2009, pp. 105-112.

[134]   T. S. Tillman and M. Cascio, “Effects of Membrane Lipids on Ion Channel Structure and Function,” Cell Biochemistry and Biophysics, Vol. 38, No. 2, 2003, pp. 161-190.

[135]   R. W. Gross, C. M. Jenkins, J. Yang, D. J. Mancuso and X. Han, “Functional Lipidomics: The Roles of Specialized Lipids and Lipid-Protein Interactions in Modulating Neuronal Function,” Prostaglandins & Other Lipid Mediators, Vol. 77, No. 1-4, 2005, pp. 52-64.

[136]   M. Cascio, “Connexins and Their Environment: Effects of Lipid Composition on Ion Channels,” Biochimica et Biophysica Acta, Vol. 1711, No. 2, 2005, pp. 142-143.

[137]   N. G. Bazan, “Synaptic Signalling by Lipids in the Life and Death of Neurons,” Molecular Neurobiology, Vol. 31, No. 1-3, 2005, pp. 219-230.

[138]   P. L. Yeagle, “Lipid Regulation of Cell Membrane Structure and Function,” FASEB Journal, Vol. 3, No. 7, 1989, pp. 1833-1842.

[139]   C. Dart, “Lipid Microdomains and the Regulation of Ion Channel Function,” Journal of Physiology, Vol. 588, No. 17, 2010, pp. 3169-3178.

[140]   N. A. Shirwany, D. Payette, J. Xie and Q. Guo, “The Amyloid Beta Ion Channel Hypothesis of Alzheimer’s Disease,” Neuropsychiatric Disease and Treatment, Vol. 3, No. 5, 2007, pp. 597-612.

[141]   H. Jang, J. Zheng and R. Nussinov, “Models of Beta-Amyloid Ion Channels in the Membrane Suggest that Channel Formation in the Bilayer Is a Dynamic Process,” Biophysical Journal, Vol. 93, No. 6, 2007, pp. 1938-1949.

[142]   I. Levitan, Y. Fang, A. Rosenhouse-Dantsker and V. Romanenko, “Cholesterol Binding and Cholesterol Transport Proteins: Cholesterol and Ion Channels,” Subcellular Biochemistry, Vol. 51, 2010, pp. 509-549.

[143]   P. Prangkio, E. Yusko, D. Sept, J. Yang and M. Mayer, “Multivariate Analyses of Amyloid-Beta Oligomer Populations Indicate a Connection between Pore Formation and Cytotoxicity,” PLoS ONE, Vol. 7, No. 10, 2012, Article ID: e47261.

[144]   R. Capone, F. Garcia Quiroz, P. Prangkio, I. Saluja, A. M. Sauer, M. R. Bautista, S. Raymond, J. Yang and M. Mayer, “Amyloid-b-Induced Ion Flux in Artificial Lipid Bilayers and Neuronal Cells: Resolving a Controversy,” Neurotoxicity Research, Vol. 16, No. 1, 2009, pp. 1-13.

[145]   A. B. Awad, R. Roy and C. S. Fink, “Beta-Sitosterol, a Plant Sterol Induces Apoptosis and Activates Key Caspases in MDA-MB-231 Human Breast Cancer Cells,” Oncology Reports, Vol. 10, No. 2, 2003, pp. 497-500.

[146]   P. J. Bouic, “The Role of Phytosterols and Phytosterols in Immune Modulation: A Review of the Past 10 Years,” Current Opinion in Clinical Nutrition and Metabolic Care, Vol. 4, No. 6, 2001, pp. 471-475.

[147]   M. H. Moghadasian, B. M. McManu, P. H. Pritchard and J. J. Frohlich, “Tall Oil—Derived Phytosterols Reduce Atherosclerosis in ApoE-Deficient Mice,” Arteriosclerosis, Thrombrosis and Vascular Biology, Vol. 17, No. 1, 1997, pp. 119-126.

[148]   A. Wachtershauser and J. Stein, “Rationale for the Luminal Provision of Butyrate in Intestinal Diseases,” European Journal of Nutrition, Vol. 39, No. 4, 2000, pp. 164-171.

[149]   G. Jacobasch, D. Schmiedl, M. Kruschewski and K. Schmehl, “Dietary Resistant Starch and Chronic Inflammatory Bowel Diseases,” International Journal of Colorectal Disease, Vol. 14, No. 4-5, 1999, pp. 201-211.

[150]   M. H. Moghadasian, B. M. McManus, D. V. Godin, B. Rodrigues and J. J. Frohlich, “Proatherogenic and Antiatherogenic Effects of Probucol and Phytosterols in Apolipoprotein E-Deficient Mice: Possible Mechanisms of Action,” Circulation, Vol. 99, No. 13, 1999, pp. 1733-1739.

[151]   H. M. Hamer, D. M. Jonkers, A. Bast, S. A. Vanhoutvin, M. A. Fischer, A. Kodde, F. J. Troost, K. Venema and R. J. Brummer, “Butyrate Modulates Oxidative Stress in the Colonic Mucosa of Healthy Humans,” Clinical Nutrition, Vol. 28, No. 1, 2009, pp. 88-93.

[152]   W. J. L. Chen, J. W. Anderson and D. Jennings, “Propionate May Mediate the Hypocholesterolemic Effects of Certain Soluble Plant Fibres in Cholesterol Fed Rats,” Experimental Biology and Medicine, Vol. 175, No. 2, 1984, pp. 215-218.

[153]   M. A. Levrat, M. L. Favier, C. Moundras, C. Rémésy, C. Demigné and C. Morand, “Role of Dietary Propionic Acid and Bile Acid Excretion in the Hypocholesterolemic Effects of Oligosaccharides in Rats,” Journal of Nutrition, Vol. 124, No. 4, 1994, pp. 531-538.

[154]   M. J. Eporin, Z. M. Yuan, D. L. Sentz, K. Plaisance and J. L. Eiseman, “Plasma Pharmacokinetics of Butyrate after Intravenous Administration of Sodium Butyrate or Oral Administration of Tributyrin Or Sodium Butyrate to Mice and Rats,” Cancer Chemotherapy and Pharmacology, Vol. 43, No. 6, 1999, pp. 445-453.

[155]   I. Demonty, Y. M. Chan, D. Pelled and P. J. Jones, “FishOil Esters of Plant Sterols Improve the Lipid Profile of Dyslipidemic Subjects More than Do Fish-Oil or Sunflower Oil Esters of Plant Sterols,” American Journal of Clinical Nutrition, Vol. 84, No. 6, 2006, pp. 1534-1542.

[156]   B. H. Kim and C. C. Akoh, “Modeling and Optimization of Lipase-Catalyzed Synthesis of Phytosteryl Esters of Oleic Acid by Response Surface Methodology,” Food Chemistry, Vol. 102, No. 1, 2007, pp. 336-342.

[157]   G. Torrelo, C. F. Torres and G. Reglero, “Enzymatic Strategies for Solvent-Free Production of Short and Medium Chain Phytosteryl Esters,” European Journal of Lipid Science and Technology, Vol. 114, No. 6, 2012, pp. 670-676.

[158]   V. E. Shashoua, J. N. Jacob, R. Ridge, A. Campbell and R. J. Baldessarini, “Gamma-Aminobutyric Acid Esters, Synthesis, Brain Uptake and Pharmacological Studies of Aliphatic and Steroid Esters of Gamma-Aminobutyric Acid,” Journal of Medicinal Chemistry, Vol. 27, No. 5, 1984, pp. 659-664.

[159]   R. Ayesh, J. A. Weststrate, P. N. Drewitt and P. A. Hepburn, “Safety Evaluation of Phytosterol Esters. Part 5. Faecal Short-Chain Fatty Acid and Microflora Content, Faecal Bacterial Enzyme Activity and Serum Female Sex Hormones in Healthy Normolipidaemic Volunteers Consuming a Controlled Diet Either with or without a Phytosterol Ester-Enriched Margarine,” Food and Chemical Toxicology, Vol. 37, No. 12, 1999, pp. 1127-1138.

[160]   K. M. Y. Engel, K. Schrock, D. Teupser, L. M. Holdt, A. Tonjes, et al., “Reduced Food Intake and Body Weight in Mice Deficient for the G Protein-Coupled Receptor GPR82,” PLoS ONE, Vol. 6, No. 12, 2011, Article ID: e29400.

[161]   Y. Xiong, N. Miyamoto, K. Shibata, M. A. Valasek, T. Motoike, R. M. Kedzierski and M. Yanagisawa, “ShortChain Fatty Acids Stimulate Leptin Production in Adipocytes through the G Protein Coupled Receptor GPR41,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 101, No. 4, 2004, pp. 10461050.

[162]   M. R. Bomhof, “Gut Bugs, Energy Balance and Obesity,” Molecular Genetic and Clinical Research in Obesity, Vol. 3, 2012, pp. 70-71.

[163]   A. Wchtershauser and J. Stein, “Rationale for the Luminal Provision of Butyrate in Intestinal Diseases,” European Journal of Nutrition, Vol. 39, No. 4, 2000, pp. 164-171.

[164]   I. Yin, G. laevsky and C. Giardina, “Butyrate Suppression of Colonocyte NF-κB Activation and Cellular Proteosome Activity,” Journal of Biological Chemistry, Vol. 276, No. 48, pp. 44641-44646.

[165]   B. F. Hinebusch, S. Meng, J. T. Wu, S. Y. Archer and R. A. Hodin, “The Effects of Short-Chain Fatty Acids on Human Colon Cancer Cell Phenotype Are Associated with Histone Hyperacetylation,” Journal of Nutrition, Vol. 132, No. 5, 2002, pp. 1012-1017.

[166]   X. Y. He, G. Merz, P. Mehta, H. Schulz and S. Y. Yang, “Human Brain Short Chain L-3 Hydroxyacyl Coenzyme A Dehydrogenase Is A Single-Domain Multifunctional Enzyme. Characterization of a Novel 17Beta-Hydroxysteroid Dehydrogenase,” Journal of Biological Chemistry, Vol. 274, No. 21, 1999, pp. 15014-15019.

[167]   J. M. Mariadason, G. A. Corner and I. H. Augenlicht, “Genetic Reprogramming in Pathways of Colonic Cell Maturation Induced by Short Chain Fatty Acids: Comparison with Trichostatin A, Sulindac and Curcumin and Implications for Chemoprevention of Colon Cancer,” Cancer Research, Vol. 60, No. 16, 2000, pp. 4561-4572.

[168]   D. Chakravortty, Y. Kato, T. Sugiyama, M. M. Mu, T. Yoshida and T. Yokochi, “The Inhibitory Action of Butyrate on Lipopolysaccharide-Induced Nitric Oxide Production in RAW 264. 7 Murine Macrophage Cells,” Journal of Endotoxin Research, Vol. 6, No. 3, 2000, pp. 243247.

[169]   U. Bocker, O. Yezerskyy, P. Feick, T. Manigold, A. Panja, U. Kalina, F. Herweck, S. Rossol and M. V. Singer, “Responsiveness of Intestinal Epithelial Cell Lines to Lipopolysaccharide Is Correlated with Toll-Like Receptor 4 but Not Toll-Like Receptor 2 or CD14 Expression,” International Journal of Colorectal Disease, Vol. 18, No. 1, 2003, pp. 25-32.

[170]   H. Luhrs, J. Schauber, G. Dusel, R. Melcher, W. Scheppach and T. Menzel, “Cytokine-Activated Degradation of Inhibitory κB Protein α Is Inhibited by the Short-Chain Fatty Acid Butyrate,” International Journal of Colorectal Disease, Vol. 16, No. 4, 2001, pp. 195-201.