Algorithms for Solving Linear Systems of Equations of Tridiagonal Type via Transformations

Show more

References

[1] G. Y. Hu and R. F. O’Connell, “Analytical Inversion of Symmetric Tridiagonal Matrices,” Journal of Physics A, Vol. 29, No. 7, 1996, pp. 1511-1513.

[2] I. Mazilu, D. A. Mazilu and H. T. Williams, “Applications of Tridiagonal Matrices in Non-Equilibrium Statistical Physics,” Electronic Journal of Linear Algebra, Vol. 24, 2012, pp. 7-17.

[3] J. A. Marrero, M. Rachidi and V. Tomeo, “Non-Symbolic Algorithms for the Inversion of Tridiagonal Matrices,” Journal of Computational and Applied Mathematics, Vol. 252, 2013, pp. 3-11. http://dx.doi.org/10.1016/j.cam.2012.05.003

[4] Q. Al-Hassan, “On Powers of Tridiagonal Matrices with Nonnegative Entries,” Journal of Applied Mathematical Sciences, Vol. 6, No. 48, 2012, pp. 2357-2368.

[5] C. M. da Fonseca and J. Petronilho, “Explicit Inverses of Some Tridiagonal Matrices,” Linear Algebra and Its Applications, Vol. 325, No. 1-3, 2001, pp. 7-21. http://dx.doi.org/10.1016/S0024-3795(00)00289-5

[6] Y. Huang and W. F. McColl, “Analytic Inversion of General Tridiagonal Matrices,” Journal of Physics A, Vol. 30, No. 22, 1997, pp. 7919-7933. http://dx.doi.org/10.1088/0305-4470/30/22/026

[7] A. Kavcic and J. M. F. Moura, “Matrices with Banded Inverses: Inversion Algorithms and Factorization of Gauss-Markov Processes,” IEEE Transactions on Information Theory, Vol. 46, No. 4, 2000, pp. 1495-1509.

http://dx.doi.org/10.1109/18.954748

[8] H.-B. Li, T.-Z. Huang, X.-P. Liu and H. Li, “On the Inverses of General Tridiagonal Matrices,” Linear Algebra and Its Applications, Vol. 433, No. 5, 2010, pp. 965-983.

http://dx.doi.org/10.1016/j.laa.2010.04.042

[9] A. Martin and I. D. Boyd, “Variant of the Thomas Algorithm for Opposite-Bordered Tridiagonal Systems of Equations,” International Journal for Numerical Methods in Biomedical Engineering, Vol. 26, No. 6, 2010, pp. 752-759.

[10] E. Olcayto, “Recursive Formulae for Ladder Network Optimization,” Electronics Letters, Vol. 15, No. 9, 1979, pp. 249-250.

http://dx.doi.org/10.1049/el:19790176

[11] T. M. Austin, M. Berndt and J. D. Moulton, “A Memory Efficient Parallel Line Solver,” Submitted to SISC, 2004.

[12] J.-J. Climent, L. Tortosa and A. Zamora, “A Note on the Recursive Decoupling Method for Solving Tridiagonal Linear Systems,” Applied Mathematics and Computation, Vol. 140, No. 1, 2003, pp. 159-164.

http://dx.doi.org/10.1016/S0096-3003(02)00218-7

[13] O. Egecioglu, C. K. Koc and A. J. Laub, “A Recursive Doubling Algorithm for Solution of Tridiagonal Systems on Hypercube Multiprocessors,” Journal of Computational and Applied Mathematics, Vol. 27, No. 1-2, 1989, pp. 95-108.

http://dx.doi.org/10.1016/0377-0427(89)90362-2

[14] M. E. A. El-Mikkawy, “An Algorithm for Solving Tridiagonal Systems,” Journal of Institute of Mathematics and Computer Science Computer Science Series, Vol. 4, No. 2, 1991, pp. 205-210.

[15] M. E. A. El-Mikkawy, “On the Inverse of a General Tridiagonal Matrix,” Applied Mathematics and Computation, Vol. 150, No. 3, 2004, pp. 669-679. http://dx.doi.org/10.1016/S0096-3003(03)00298-4

[16] M. E. A. El-Mikkawy, “A New Computational Algorithm for Solving Periodic Tri-Diagonal Linear Systems,” Applied Mathematics and Computation, Vol. 161, No. 2, 2005, pp. 691-696.

http://dx.doi.org/10.1016/j.amc.2003.12.114

[17] M. E. A. El-Mikkawy and A. Karawia, “Inversion of General Tridiagonal Matrices,” Applied Mathematics Letters, Vol. 19, No. 8, 2006, pp. 712-720. http://dx.doi.org/10.1016/j.aml.2005.11.012

[18] M. E. A. El-Mikkawy and E.-D. Rahmo, “A New Recursive Algorithm for Inverting General Tridiagonal and Anti-Tridiagonal Matrices,” Applied Mathematics and Computation, Vol. 204, No. 1, 2008, pp. 368-372.

http://dx.doi.org/10.1016/j.amc.2008.06.053

[19] M. E. A. El-Mikkawy, “A Generalized Symbolic Thomas Algorithm,” Applied Mathematics, Vol. 3, No. 4, 2012, pp. 342-345.

http://dx.doi.org/10.4236/am.2012.34052

[20] D. Fanache, “A Parallel Solution of Tridiagonal Linear Systems by Continued Fractions,” Journal of Arts & Sciences, Vol. 11, No. 1, 2011, pp. 21-30.

[21] R. K. Mallik, “The Inverse of a Tridiagonal Matrix,” Linear Algebra and Its Applications, Vol. 325, No. 1-3, 2001, pp. 109-139.

http://dx.doi.org/10.1016/S0024-3795(00)00262-7

[22] B. V. Minchev, “Some Algorithms for Solving Special Tridiagonal Block Toeplitz Linear Systems,” Journal of Computational and Applied Mathematics, Vol. 156, No. 1, 2003, pp. 179-200. http://dx.doi.org/10.1016/S0377-0427(02)00911-1

[23] T. Sogabe, “On a Two-Term Recurrence for the Determinant of a General Matrix,” Applied Mathematics and Computation, Vol. 187, No. 2, 2007, pp. 785-788.

http://dx.doi.org/10.1016/j.amc.2006.08.156

[24] T. Sugimoto, “On an Inverse Formula of a Tridiagonal Matrix,” Operators and Matrices, Vol. 6, No. 3, 2012, pp. 465-480.

http://dx.doi.org/10.7153/oam-06-30

[25] R. Usmani, “Inversion of a Tridiagonal Jacobi Matrix,” Linear Algebra and Its Applications, Vol. 212-213, 1994, pp. 413-414.

http://dx.doi.org/10.1016/0024-3795(94)90414-6

[26] T. Yamamoto and Y. Ikebe, “Inversion of Band Matrices,” Linear Algebra and Its Applications, Vol. 24, 1979, pp. 105-111.

http://dx.doi.org/10.1016/0024-3795(79)90151-4

[27] Y. Zhang, J. Cohen and J. D. Owens, “Fast Tridiagonal Solvers on the GPU,” Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP 2010), Bangalore, 9-14 January 2010, pp. 127-136.

[28] M. E. A. El-Mikkawy, “A Fast Algorithm for Evaluating nth Order Tri-Diagonal Determinants,” Applied Mathematics and Computation, Vol. 202, No. 1, 2008, pp. 210-215.

http://dx.doi.org/10.1016/j.amc.2008.01.032

[29] J. W. Demmel, “Applied Numerical Linear Algebra,” Society for Industrial and Applied Mathematics, Philadelphia, 1997.

http://dx.doi.org/10.1137/1.9781611971446

[30] M. E. A. El-Mikkawy, “A Note on a Three-Term Recurrence for a Tridiagonal Matrix,” Applied Mathematics and Computation, Vol. 139, No. 2-3, 2003, pp. 503-511.

http://dx.doi.org/10.1016/S0096-3003(02)00212-6