[1] Z. L. Wang, “Zinc Oxide Nanostructures: Growth, Properties and Applications,” Journal of Physics Condensed Matter, Vol. 16, No. 25, 2004, pp. R829-R858.
http://dx.doi.org/10.1088/0953-8984/16/25/R01
[2] S. Sakthivela, B. Neppolianb, M. V. Shankarb, B. Arabindoob, M. Palanichamy and V. Murugesan, “Solar Photocatalytic Degradation of Azo Dye: Comparison of Photocatalytic Efficiency of ZnO and TiO2,” Solar Energy Materials and Solar Cells, Vol. 77, No. 1, 2003, pp. 6582. http://dx.doi.org/10.1016/S0927-0248(02)00255-6
[3] Y. Hao, M. Yang, W. Li, X. Qiao, L. Zhang and S. Cai, “A Photoelectrochemical Solar Cell Based on ZnO/Dye/ polypyrrole Film Electrode as Photoanode,” Solar Energy Materials and Solar Cells, Vol. 60, No. 4, 2000, pp. 349-354. http://dx.doi.org/10.1016/S0927-0248(99)00053-7
[4] R. Jose, V. Thavasi and S. Ramakrishna, “Metal Oxides for Dye-Sensitized Solar Cells,” Journal of American Ceramic Society, Vol. 92, No. 2, 2009, pp. 289-301.
http://dx.doi.org/10.1016/j.ssc.2003.11.051
[5] X. C. Sun, H. Z. Zhang, J. Xu, Q. Zhao, R. M. Wang and D. P. Yu, “Shape Controllable Synthesis of ZnO Nanorod Arrays via Vapor Phase Growth,” Solid State Communications, Vol. 129, No. 12, 2004, pp. 803-807.
http://dx.doi.org/10.1016/j.ssc.2003.11.051
[6] X. Y. Kong, Y. Ding, R. Yang and Z. L. Wang, “SingleCrystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts,” Science, Vol. 303, No. 5662, 2004, pp. 1348-1351. http://dx.doi.org/10.1126/science.1092356
[7] N. Tamaekong, C. Liewhiran, A. Wisitsoraat and S. Phanichphant, “Flame Spray-Made Undoped Zinc Oxide Films for Gas Sensing Applications,” Sensor, Vol. 10, No. 8, 2010, pp. 7863-7873.
http://dx.doi.org/10.3390/s100807863
[8] M. J. Height, L. Madler and S. E. Pratsinis, “Nanorods of ZnO Made by Flame Spray Pyrolysis,” Chemistry of Materials, Vol. 18, No. 2, 2006, pp. 572-578.
http://dx.doi.org/10.1021/cm052163y
[9] A. B. Hartanto, X. Ning, Y. Nakata and T. Okada, “Growth Mechanism of ZnO Nanorods from Nanoparticles Formed in a Laser Ablation Plume,” Applied Physics A, Vol. 78, No. 3, 2004, pp. 299-301.
http://dx.doi.org/10.1007/s00339-003-2286-2
[10] W. I. Park, D. H. Kim, S. W. Jung and G. C. Yi, “Metalorganic Vapor-Phase Epitaxial Growth of Vertically Well-Aligned ZnO Nanorods,” Applied Physics Letters, Vol. 80, No. 22, 2002, pp. 4232-4234.
http://dx.doi.org/10.1063/1.1482800
[11] J. J. Wu and S. C. Liu, “Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition,” Advanced Materials, Vol. 14, 2002, pp. 215-218.
[12] F. Xu, C. D’Esposito, X. Liu, B. Kear and S. D. Tse, “Flame Synthesis of ZnON Anostrucutres: Morphology and Local Growth Conditions,” Materials Research Society Symposium Proceedings, Vol. 1142, 2009, pp. JJ05JJ39.
[13] Y. C. Hong, J. H. Kim and H. S. Uhm, “ZnO Nanorods Synthesized by Self-Catalytic Method of Metal in Atmospheric Microwave Plasma Torch Flame,” Japanese Journal of Applied Physics, Vol. 45, No. 7, 2006, pp. 5940-5944. http://dx.doi.org/10.1143/JJAP.45.5940
[14] H. Peng, Y. Fangli, B. Liuyang, L. Jinlin and C. Yunfa, “Plasma Synthesis of Large Quantities of Zinc Oxide Nanorods,” Journal of Physical Chemistry C, Vol. 111, No. 1, 2007, pp. 194-200.
http://dx.doi.org/10.1021/jp065390b
[15] M. K. Akhtar, S. E. Pratsinis and S. V. R. Mastrangelo, “Dopants in Vapor-Phase Synthesis of Titania Powders,” Journal of American Ceramic Society, Vol. 75, No. 12, 1992, pp. 3408-3416.
http://dx.doi.org/10.1111/j.1151-2916.1992.tb04442.x
[16] T. Tani, L. Madler and S. E. Pratsinis, “Homogeneous ZnO Nanoparticles by Flame Spray Pyrolysis,” Journal of Nanoparticle Research, Vol. 4, No. 4, 2002, pp. 337-343.
http://dx.doi.org/10.1023/A:1021153419671
[17] F. Xu, S. D. Tse, J. F. Al-Sharab and B. H. Kear, “Flame Synthesis of Aligned Tungsten Oxide Nanowires,” Applied Physics Letters, Vol. 88, 2006, Article ID: 243115.
http://dx.doi.org/10.1063/1.2213181
[18] P. M. Rao and X. Zheng, “Rapid Catalyst-Free Flame Synthesis of Dense, Aligned-Fe2O3 Nanoflake and Cuonanoneedle Arrays,” Nano Letters, Vol. 9, No. 8, 2009, pp. 3001-3006. http://dx.doi.org/10.1021/nl901426t
[19] W. Merchan-Merchan, A. V. Saveliev and A. M. Taylor, “High Rate Flame Synthesis of Highly Crystalline Iron Oxide Nanorods,” Nanotechnology, Vol. 19, 2008, Article ID: 125605.
http://dx.doi.org/10.1088/0957-4484/19/12/125605
[20] W. Merchan-Merchan, A. V. Saveliev and V. Nguyen, “Opposed Flow Oxy-Flame Synthesis of Carbon and Oxide Nanostrucutres on Molybdenum Probes,” Proceedings of the Combustion Institute, Vol. 32, No. 2, 2009, pp. 1879-1886. http://dx.doi.org/10.1016/j.proci.2008.07.025
[21] S. L. Chung and J. L. Katz, “The Counterflow Diffusion Flame Burner: A New Tool for the Study of the Nucleation of Refractory Compounds,” Combustion and Flame, Vol. 61, No. 3, 1985, pp. 271-279.
http://dx.doi.org/10.1016/0010-2180(85)90108-7
[22] Y. Xing, U. O. Koylu and D. E. Rosner, “Synthesis and Restructuring of Inorganic Nanoparticles in Counterflow diffusion Flames,” Combustion and Flame, Vol. 107, No. 1996, pp. 85-102.
http://dx.doi.org/10.1016/0010-2180(96)00005-3
[23] Y. Xing, T. P. Kole and J. L. Katz, “Shape Controlled Synthesis of Iron Oxide Nanoparticles,” Journal of Materials Science Letters, Vol. 22, No. 11, 2003, pp. 787-790.
http://dx.doi.org/10.1023/A:1023923104337
[24] G. C. Yi, C. Wang and W. I. Park, “ZnO Nanorods: Synthesis, Characterization and Applications,” Semiconductor Science and Technology, Vol. 20, No. 4, 2005, pp. S22-S34. http://dx.doi.org/10.1088/0268-1242/20/4/003
[25] M. R. Zachariah, D. Chin, H. G. Semerjian and J. L. Katz, “Silica Particle Synthesis in a Counterflow Diffusion Flame Reactor,” Combustion and Flame, Vol. 78, No. 3-4, 1989, pp. 287-298.
http://dx.doi.org/10.1016/0010-2180(89)90018-7
[26] I. S. Altman, I. E. Agranovski and M. Choi, “Nanoparticle Generation: The Concept of a Stagnation Size Region for Condensation Growth,” Physical Review E, Vol. 70, 2004, Article ID: 062603.
http://dx.doi.org/10.1103/PhysRevE.70.062603
[27] T. P. Pandya and F. J. Weinberg, “The Structure of Flat Counterflow Diffusion Flames,” Proceedings of the Royal Society London, Series A: Mathematical and Physical Sciences, Vol. 279, No. 1379, 1964, pp. 544-561.
http://dx.doi.org/10.1098/rspa.1964.0124
[28] D. C. Kim, B. H. Kong and H. K. Cho, “Synthesis and Growth Mechanism of Catalyst Free ZnO Nanorods with Enhanced Aspect Ratio by High Flow Additional Carrier Gas at Low Temperature,” Journal of Physics D: Applied Physics, Vol. 42, 2009, Article ID: 065406.
http://dx.doi.org/10.1088/0022-3727/42/6/065406
[29] L. Vayssieres, K. Keis, A. Hagfeldt and S. E. Lindquist, “Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes,” Chemistry of Materials, Vol. 13, No. 12, 2001, pp. 4395-4398.
http://dx.doi.org/10.1021/cm011160s
[30] C. Ye, X. Fang, Y. Hao, X. Teng and L. Zhang, “Zinc Oxide Nanostrucutres: Morphology Derivation and Evolution,” Journal of Physical Chemistry B, Vol. 109, No. 42, 2005, pp. 19758-19765.
http://dx.doi.org/10.1021/jp0509358
[31] Y. Kuniya, Y. Deguchi and M. Ichida, “Physicochemical Properties of Dimethylzinc, Dimethylcadmium and Diethylzinc,” Applied Organometallic Chemistry, Vol. 5, No. 4, 1991, pp. 337-347.
http://dx.doi.org/10.1002/aoc.590050419
[32] H. E. Ruiz, “Synthesis of Iron Oxide Nanoparticles in a Counterflow Diffusion Flame Reactor,” M.S. Thesis, Missouri University of Science and Technology, 2008.
[33] Ph. Buffat and J-P. Borel, “Size Effect on Melting Temperature of Gold Particles,” Physical Review A, Vol. 13, No. 6, 1976, pp. 2287-2298.
http://dx.doi.org/10.1103/PhysRevA.13.2287
[34] J. B. Baxter, F. Wu and E. S. Aydil, “Growth Mechanism and Characterization of Zinc Oxide Hexagonal Columns,” Applied Physics Letters, Vol. 83, No. 18, 2003, pp. 3797-3799. http://dx.doi.org/10.1063/1.1624467
[35] J. M. Calleja and M. Cardona, “Resonant Raman Scattering in ZnO,” Physical Review B, Vol. 16, No. 8, 1977, pp. 3753-3761. http://dx.doi.org/10.1103/PhysRevB.16.3753
[36] A. Umar, S. H. Kim, Y. S. Lee, K. S. Nahm and Y. B. Hahn, “Catalyst-Free Large-Quantity Synthesis of ZnONanorods by Vapor-Solid Growth Mechanism: Structural and Optical Properties,” Journal of Crystal Growth, Vol. 282, No. 1-2, 2005, pp. 131-136.
http://dx.doi.org/10.1016/j.jcrysgro.2005.04.095
[37] R. S. Zeferino, M. B. Flores and U. Pal, “Photoluminescence and Raman Scattering in Ag-Doped ZnONanoparticles,” Journal of Applied Physics, Vol. 109, 2011, Article ID: 014308. http://dx.doi.org/10.1063/1.3530631
[38] H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu and W. Cai, “Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls,” Advanced Functional Materials, Vol. 20, No. 4, 2010, pp. 561-572.
http://dx.doi.org/10.1002/adfm.200901884
[39] Y. Wang, I. Ramos and J. J. Santiago-Aviles, “Optical Bandgap and Photoconductance of Electrospun Tin Oxide Nanofibers,” Journal of Applied Physics, Vol. 102, 2007, Article ID: 093517. http://dx.doi.org/10.1063/1.2800261
[40] C. F. Klingshirn, B. K. Meyer, A. Waag, A. Hoffman and J. Geurts, “Zinc Oxide: From Fundamental Properties towards Novel Applications,” Springer, Berlin, 2010.
http://dx.doi.org/10.1007/978-3-642-10577-7