[1] Gimbrone Jr., M.A. and Garcia-Cardena G. (2013) Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovascular Pathology, 22, 9-15.
http://dx.doi.org/10.1016/j.carpath.2012.06.006
[2] Furchgott, R.F. and Zawadzki, J.V. (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 288, 373-376.
http://dx.doi.org/10.1038/288373a0
[3] Libby, P. (2002) Inflammation in atherosclerosis. Nature, 420, 868-874.
http://dx.doi.org/10.1038/nature01323
[4] Giannotti, G. and Landmesser U. (2007) Endothelial dysfunction as an early sign of atherosclerosis. Herz Kardiovaskuläre Erkrankungen, 32, 568-572.
http://dx.doi.org/10.1007/s00059-007-3073-1
[5] Cai, H. and Harrison, D.G. (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circulation Research, 87, 840-844.
http://dx.doi.org/10.1161/01.RES.87.10.840
[6] Hadi, H.A., Carr, C.S. and Al Suwaidi, J. (2005) Endothelial dysfunction: Cardiovascular risk factors, therapy, and outcome. Vascular Health and Risk Management, 1, 183-198.
[7] Dimmeler, S., Hermann C. and Zeiher, A.M. (1998) Apoptosis of endothelial cells. Contribution to the patho-physiology of atherosclerosis? European Cytokine Network, 9, 697-698.
[8] Duval, H., Harris, M., Li, J., Johnson, N. and Print, C. (2003) New insights into the function and regulation of endothelial cell apoptosis. Angiogenesis, 6, 171-183.
http://dx.doi.org/10.1023/B:AGEN.0000021390.09275.bc
[9] Tricot, O., Mallat, Z., Heymes, C., Belmin, J., Leseche, G. and Tedgui A. (2000) Relation between endothelial cell apoptosis and blood flow direction in human atherosclerotic plaques. Circulation, 101, 2450-2453.
http://dx.doi.org/10.1161/01.CIR.101.21.2450
[10] Kono, Y., Sawada, S., Kawahara, T., Tsuda, Y., Higaki, T., Yamasaki, S., Imamura, H., Tada, Y., Sato, T., Hiranuma, O., Akamatsu, N., Komatsu, S., Tamagaki, T., Nakagawa, K., Tsuji, H. and Nakagawa, M. (2002) Bradykinin inhibits serum-depletion-induced apoptosis of human vascular endothelial cells by inducing nitric oxide via calcium ion kinetics. Journal of Cardiovascular Pharmacology, 39, 251-261.
http://dx.doi.org/10.1097/00005344-200202000-00012
[11] Aoki, M., Nata, T., Morishita, R., Matsushita, H., Nakagami, H., Yamamoto, K., Yamazaki, K., Nakabayashi, M., Ogihara, T. and Kaneda, Y. (2001) Endothelial apoptosis induced by oxidative stress through activation of NF-kappaB: Antiapoptotic effect of antioxidant agents on endothelial cells. Hypertension, 38, 48-55.
http://dx.doi.org/10.1161/01.HYP.38.1.48
[12] Li, J.M., Fan, L.M., George, V.T. and Brooks, G. (2007) NOX2 regulates endothelial cell cycle arrest and apoptosis via p21cip1 and p53. Free Radical Biology & Medicine, 43, 976-986.
http://dx.doi.org/10.1016/j.freeradbiomed.2007.06.001
[13] Bedard, K. and Krause, K.H. (2007) The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiological Reviews, 87, 245-313.
http://dx.doi.org/10.1152/physrev.00044.2005
[14] Lassegue, B. and Griendling, K.K. (2010) NADPH oxidases: Functions and pathologies in the vasculature. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 653-661.
http://dx.doi.org/10.1161/ATVBAHA.108.181610
[15] Martyn, K.D., Frederick, L.M., von Loehneysen, K., Dinauer, M.C. and Knaus, U.G. (2006) Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signaling, 18, 69-82.
http://dx.doi.org/10.1016/j.cellsig.2005.03.023
[16] Dikalov, S.I., Dikalova, A.E., Bikineyeva, A.T., Schmidt, H.H., Harrison, D.G. and Griendling, K.K. (2008) Distinct roles of Nox1 and NOX4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production. Free Radical Biology & Medicine, 45, 1340-1351.
http://dx.doi.org/10.1016/j.freeradbiomed.2008.08.013
[17] Irani, K. (2000) Oxidant signaling in vascular cell growth, death, and survival: A review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling. Circulation Research, 87, 179-183.
http://dx.doi.org/10.1161/01.RES.87.3.179
[18] Basuroy, S., Bhattacharya, S., Leffler, C.W. and Parfenova, H. (2009) NOX4 NADPH oxidase mediates oxidative stress and apoptosis caused by TNF-alpha in cerebral vascular endothelial cells. American Journal of Physiology-Cell Physiology, 296, C422-C432.
http://dx.doi.org/10.1152/ajpcell.00381.2008
[19] Peshavariya, H., Dusting, G.J., Jiang, F., Halmos, L.R., Sobey, C.G., Drummond, G.R. and Selemidis, S. (2009) NADPH oxidase isoform selective regulation of endothelial cell proliferation and survival. Naunyn-Schmiedeberg’s Archives of Pharmacology, 380, 193-204.
http://dx.doi.org/10.1007/s00210-009-0413-0
[20] Deshpande, S.S., Angkeow, P., Huang, J., Ozaki, M. and Irani, K. (2000) Rac1 inhibits TNF-alpha-induced endothelial cell apoptosis: Dual regulation by reactive oxygen species. The FASEB Journal, 14, 1705-1714.
http://dx.doi.org/10.1096/fj.99-0910com
[21] Mochizuki, T., Furuta S., Mitsushita J., Shang, W.H., Ito, M., Yokoo, Y., Yamaura, M., Ishizone, S., Nakayama, J., Konagai, A., Hirose, K., Kiyosawa, K. and Kamata T. (2006) Inhibition of NADPH oxidase 4 activates apoptosis via the AKT/apoptosis signal-regulating kinase 1 pathway in pancreatic cancer PANC-1 cells. Oncogene, 25, 3699-3707.
http://dx.doi.org/10.1038/sj.onc.1209406
[22] Jeon, H. and Boo, Y.C. (2013) Laminar shear stress enhances endothelial cell survival through a NADPH oxidase 2-dependent mechanism. Biochemical and Biophysical Research Communications, 430, 460-465.
http://dx.doi.org/10.1016/j.bbrc.2012.12.016
[23] Petry, A., Djordjevic, T., Weitnauer, M., Kietzmann, T., Hess, J. and Gorlach, A. (2006) NOX2 and NOX4 mediate proliferative response in endothelial cells. Antioxidants & Redox Signaling, 8, 1473-1484.
http://dx.doi.org/10.1089/ars.2006.8.1473
[24] Valgimigli, M., Merli, E., Malagutti, P., Soukhomovskaia, O., Cicchitelli, G., Macri, G. and Ferrari, R. (2003) Endothelial dysfunction in acute and chronic coronary syndromes: Evidence for a pathogenetic role of oxidative stress. Archives of Biochemistry and Biophysics, 420, 255-261.
http://dx.doi.org/10.1016/j.abb.2003.07.006
[25] Buettner, G.R., Ng, C.F., Wang, M., Rodgers, V.G. and Schafer, F.Q. (2006) A new paradigm: Manganese superoxide dismutase influences the production of H2O2 in cells and thereby their biological state. Free Radical Biology & Medicine, 41, 1338-1350.
http://dx.doi.org/10.1016/j.freeradbiomed.2006.07.015
[26] Clement, M.V. and Pervaiz, S. (2001) Intracellular superoxide and hydrogen peroxide concentrations: A critical balance that determines survival or death. Redox Report, 6, 211-214.
http://dx.doi.org/10.1016/j.freeradbiomed.2006.07.015