ABB  Vol.5 No.3 , February 2014
Identification of an extracellular infection-induced glyceraldehyde-3-phosphate dehydrogenase of the phytopathogenic proteobacterium Pseudomonas syringae pv tomato DC3000
ABSTRACT

According to molecular biology, genomic and proteomic data, the phytopathogenic gamma-proteobacterium Pseudomonas syringae pv. tomato DC3000 produces a number of proteins that may promote infection and draw nutrients from plants. Remarkably, P. syringae DC3000 strain possesses three paralogous gap genes encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH) enzymes with different predicted molecular sizes and metabolic functions. As GAPDH was shown to be a virulence factor in other microbial pathogens, in the current study, we analyzed the expression levels of each paralogous gap gene by realtime PCR to understand the actual impact of their protein products on P. syringae virulence. We found that all of them were strongly induced during the infection process. Nevertheless, proteomic analysis of culture supernatants revealed that only Class I GAPDH1 encoded by the gap1 gene was identified as an extracellular protein in infective cells. These results strongly suggest that this GAPDH should play a role in the infective process, including its well-know enzymatic function in the glycolytic metabolic pathway.


Cite this paper
Elkhalfi, B. , Serrano, A. and Soukri, A. (2014) Identification of an extracellular infection-induced glyceraldehyde-3-phosphate dehydrogenase of the phytopathogenic proteobacterium Pseudomonas syringae pv tomato DC3000. Advances in Bioscience and Biotechnology, 5, 201-208. doi: 10.4236/abb.2014.53026.
References
[1]   Bashan, Y., Okon, Y. and Henis, Y. (1985) Detection of cutinases and pectic enzymes during infection of tomato by Pseudomonas syringae pv. tomato. Phytopathology, 75, 940. http://dx.doi.org/10.1094/Phyto-75-940

[2]   Bashan, Y. and De-Bashan, L.E. (2002) Protection of tomato seedlings against infection by Pseudomonas syringae pv. tomato by using the plant growth-promoting bacterium Azospirillum brasilense. Applied and Environmental Microbiology, 68, 2637-2643.
http://dx.doi.org/10.1128/AEM.68.6.2637-2643.2002

[3]   Badel, J.L., Nomura, K., Bandyopadhyay, S., Shimizu, R., Collmer, A. and He, S.Y. (2003) Pseudomonas syringae pv. tomato DC3000 HopPtoM (CEL ORF3) is important for lesion formation but not growth in tomato and is secreted and translocated by the Hrp Type III secretion system in a chaperone-dependent manner. Molecular Microbiology, 49, 1239-1251.
http://dx.doi.org/10.1046/j.1365-2958.2003.03647.x

[4]   Preston, G.M. (2001) Pseudomonas syringae pv. tomato: The right pathogen, of the right plant, at the right time. Molecular Plant Pathology, 1, 263-275.
http://dx.doi.org/10.1046/j.1364-3703.2000.00036.x

[5]   Elkhalfi, B., Essari, A., Serrano, A. and Soukri. A. (2013) Antibacterial activity of plant methanolic extracts on a field isolate of Pseudomonas syringae pv tomato from the casablanca region (Morocco). Advances in Bioscience and Biotechnology, 4, 1-9.

[6]   Rico, A. and Preston, G.M. (2008) Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Molecular Plant-Microbe Interactions, 21, 269-282.
http://dx.doi.org/10.1094/MPMI-21-2-0269

[7]   Schneider, R.W. and Grogan, R.G. (1977) Tomato leaf trichomes, a habitat for resident populations of Pseudomonas tomato. Phytopathology, 67, 898-902.
http://dx.doi.org/10.1094/Phyto-67-898

[8]   Bashan, Y. and de-Bashan, L.E. (2002) Reduction of bacterial speck (Pseudomonas syringae pv. tomato) of tomato by combined treatments of plant growth-promoting bacterium, Azospirillum brasilense, streptomycin sulfate, and chemo-thermal seed treatment. European Journal of Plant Pathology, 108, 821-829.
http://dx.doi.org/10.1023/A:1021274419518

[9]   Buell, C.R., Joardar, V., Lindeberg, M., Selengut, J., Paulsen, I.T., Gwinn, M.L., et al. (2003) The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proceedings of the National Academy of Sciences, 100, 10181-10186. http://dx.doi.org/10.1073/pnas.1731982100

[10]   Feil, H., Feil, W.S., Chain, P., Larimer, F., DiBartolo, G., Copeland, A., et al. (2005) Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proceedings of the National Academy of Sciences of the United States of America, 102, 11064-11069.
http://dx.doi.org/10.1073/pnas.0504930102

[11]   Fouts, D.E., Abramovitch, R.B., Alfano, J.R., Baldo, A.M., Buell, C.R., Cartinhour, S., et al. (2002) Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor. Proceedings of the National Academy of Sciences, 99, 2275-2280.
http://dx.doi.org/10.1073/pnas.032514099

[12]   Buell, C.R., Joardar, V., Lindeberg, M., Selengut, J., Paulsen, I.T., Gwinn, M.L., et al. (2003) The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proceedings of the National Academy of Sciences, 100, 10181-10186. http://dx.doi.org/10.1073/pnas.1731982100

[13]   Hueck, C.J. (1998) Type III Protein Secretion Systems in Bacterial Pathogens of Animals and Plants. Microbiology and Molecular Biology Reviews, 62, 379-433.

[14]   Zhao, Y., Thilmony, R., Bender, C.L., Schaller, A., He, S.Y. and Howe, G.A. (2003) Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. The Plant Journal, 36, 485-499.
http://dx.doi.org/10.1046/j.1365-313X.2003.01895.x

[15]   Soukri, A., Hafid, N., Valverde, F., Elkebbaj, M.S. and Serrano, A. (1292) Evidence for a posttranslational covalent modification of liver glyceraldehyde-3-phosphate dehydrogenase in hibernating jerboa ( Jaculus orientalis). Biochimica et Biophysica Acta (BBA): Protein Structure, 1996, 177-187.
http://dx.doi.org/10.1016/0167-4838(95)00200-6

[16]   Soukri, A., Valverde, F., Hafid, N., Elkebbaj, M.S. and Serrano, A. (1995) Characterization of muscle glyceraldehyde-3-phosphate dehydrogenase isoforms from euthermic and induced hibernating Jaculus orientalis. Biochimica et Biophysica Acta (BBA): General Subjects, 1243, 161-168.
http://dx.doi.org/10.1016/0304-4165(94)00137-M

[17]   Petersen, J., Brinkmann, H. and Cerff, R. (2003) Origin, Evolution, and Metabolic Role of a Novel Glycolytic GAPDH Enzyme Recruited by Land Plant Plastids. Journal of Molecular Evolution, 57, 16-26.
http://dx.doi.org/10.1007/s00239-002-2441-y

[18]   Zheng, L., Roeder, R.G. and Luo, Y.S. (2003) Phase Activation of the Histone H2B Promoter by OCA-S, a Coactivator Complex that Contains GAPDH as a Key Component. Cell, 114, 255-266.
http://dx.doi.org/10.1016/S0092-8674(03)00552-X

[19]   Dheda, K., Huggett, J.F., Bustin, S.A., Johnson, M.A., Rook, G. and Zumla, A. (2004) Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques, 37, 112-119.

[20]   Aguilera, L., Ferreira, E., Giménez, R., Fernández, F.J., Taulés, M., Aguilar, J., et al. (2012) Secretion of the housekeeping protein glyceraldehyde-3-phosphate dehydrogenase by the LEE-encoded Type III secretion system in enteropathogenic Escherichia coli. The International Journal of Biochemistry & Cell Biology, 44, 955-962.
http://dx.doi.org/10.1016/j.biocel.2012.03.002

[21]   Kenny, B. and Finlay, B.B. (1995) Protein secretion by enteropathogenic Escherichia coli is essential for transducing signals to epithelial cells. Proceedings of the National Academy of Sciences, 92, 7991-7995.
http://dx.doi.org/10.1073/pnas.92.17.7991

[22]   Alvarez, A.H., Martinez-Cadena, G., Silva, M.E., Saavedra, E. and Avila, E.E. (2007) Entamoeba histolytica: ADP-ribosylation of secreted glyceraldehyde-3-phosphate dehydrogenase. Experimental Parasitology, 117, 349-356.
http://dx.doi.org/10.1016/j.exppara.2007.04.016

[23]   Eichenbaum, Z., Green, B.D. and Scott, J.R. (1996) Iron starvation causes release from the group A streptococcus of the ADP-ribosylating protein called plasmin receptor or surface glyceraldehyde-3-phosphate-dehydrogenase. Infection and Immunity, 64, 1956-1960.

[24]   Pancholi, V. and Fischetti, V.A. (1997) Regulation of the phosphorylation of human pharyngeal cell proteins by group A streptococcal surface dehydrogenase: Signal transduction between streptococci and pharyngeal cells. The Journal of Experimental Medicine, 186, 1633-1643.
http://dx.doi.org/10.1084/jem.186.10.1633

[25]   Elkhalfi, B., Araya-Garay, J.M., Rodríguez-Castro, J., Rey-Méndez, M., Soukri, A. and Serrano Delgado, A. (2013) Cloning and heterologous overexpression of three gap genes encoding different glyceraldehyde-3-phosphate dehydrogenases from the plant pathogenic bacterium Pseudomonas syringae pv. tomato strain DC3000. Protein Expression and Purification, 89, 146-155.
http://dx.doi.org/10.1016/j.pep.2013.02.005

[26]   Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685.
http://dx.doi.org/10.1038/227680a0

[27]   Iddar, A., Serrano, A. and Soukri, A. (2002) A phosphate-stimulated NAD (P)+-dependent glyceraldehyde-3-phosphate dehydrogenase in Bacillus cereus. FEMS Microbiology Letters, 211, 29-35.
http://dx.doi.org/10.1111/j.1574-6968.2002.tb11199.x

[28]   Yuan, J. and He, S.Y. (1996) The Pseudomonas syringae Hrp regulation and secretion system controls the production and secretion of multiple extracellular proteins. Journal of Bacteriology, 178, 6399-6402.

[29]   Nelson, D., Goldstein, J.M., Boatright, K., Harty, D.W.S., Cook, S.L., Hickman, P.J., et al. (2001) pH-regulated secretion of a glyceraldehyde-3-phosphate dehydrogenase from Streptococcus gordonii FSS2: Purification, characterization, and cloning of the gene encoding this enzyme. Journal of Dental Research, 80, 371-377.
http://dx.doi.org/10.1177/00220345010800011301

[30]   Tommassen, J., Filloux, A., Bally, M., Murgier, M. and Lazdunski, A. (1992) Protein secretion in Pseudomonas aeruginosa. FEMS Microbiology Letters, 103, 73-90.
http://dx.doi.org/10.1111/j.1574-6968.1992.tb05824.x

[31]   Pugsley, A.P. (1993) The complete general secretory pathway in gram-negative bacteria. Microbiological Reviews, 57, 50-108.

[32]   Nelson, D., Goldstein, J.M., Boatright, K., Harty, D.W.S., Cook, S.L., Hickman, P.J., Potempa, J., Travis, J. and Mayo, J.A. (2001) pH-regulated secretion of a glyceroldehyde-3-phosphate dehydrogenase from Streptococcus gordonii FSS2: Purification, characterization, and cloning of the gene encoding this enzyme. Journal of Dental Research, 80, 371-377.
http://dx.doi.org/10.1177/00220345010800011301

[33]   Haapalainen, M., Mosorin, H., Dorati, F., Wu, R.F., Roine, E., Taira, S., Nissinena, R., Mattinena, L., Jacksonc, R., Pirhonena, M. and Lin, N.C. (2012) Hcp2, a secreted protein of the phytopathogen Pseudomonas syringae pv. tomato DC3000, is required for fitness for competition against bacteria and yeasts. Journal of Bacteriology, 194, 4810-4822. http://dx.doi.org/10.1128/JB.00611-12

[34]   Charkowski, A.O., Alfano, J.R., Preston, G., Yuan, J., He, S.Y. and Collmer, A. (1998) The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. Journal of Bacteriology, 180, 5211-5217.

[35]   Peñaloza-Vázquez, A., Preston, G.M., Collmer, A. and Bender, C.L. (2000) Regulatory interactions between the Hrp Type III protein secretion system and coronatine biosynthesis in Pseudomonas syringae pv. tomato DC3000. Microbiology, 146, 2447-2456.

[36]   Tampakaki, A.P., Fadouloglou, V.E., Gazi, A.D., Panopoulos, N.J. and Kokkinidis, M. (2004) Conserved features of Type III secretion. Cellular Microbiology, 6, 805-616.
http://dx.doi.org/10.1111/j.1462-5822.2004.00432.x

[37]   Roine, E., Wei, W., Yuan, J., Nurmiaho-Lassila, E.L., Kalkkinen, N., Romantschuk, M. and He, S.Y. (1997) Hrp pilus: An hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. Proceedings of the National Academy of Sciences of the United States of America, 94, 3459-3464.
http://dx.doi.org/10.1073/pnas.94.7.3459

[38]   Kvitko, B.H., Ramos, A.R., Morello, J.E., Oh, H.S. and Collmer, A. (2007) Identification of harpins in Pseudomonas syringae pv. tomato DC3000, which are functionally similar to HrpK1 in promoting translocation of Type III secretion system effectors. Journal of Bacteriology, 189, 8059-8072. http://dx.doi.org/10.1128/JB.01146-07

 
 
Top