AJAC  Vol.5 No.2 , January 2014
Preparation and Properties of a New Carbon Paste Iron Selective Electrodes and Their Applications
Abstract: The new ferrous-selective modified carbon paste electrodes (I and II) based on 5,5’-(propane-1,3-diylbis(sulfanediyl))bis(3-benzyl-4H-1,2,4-triazol-4-amine) (electrode I, A-ionophore) and 5,5’-(butane-1,4-diyl-bis(sulfane- diyl))bis(3-benzyl-4H-1,2,4-triazol-4-amine) (electrode II, B-ionophore) as ionophores are described. These electrodes exhibit Nernstian slopes of 30.2 ± 0.5 and 29.1 ± 0.5 mV·decade-1, linear range of 1.0 × 10-7 - 1.0 × 10-2 mol·L-1 Fe(II) ion and detection limit of 1.0 × 10-7 mol·L-1 Fe(II) ion for electrode (I) and electrode (II), respectively. Both electrodes (I and II) have a fast response time of about 15 sand can be used for at least 3 months. The two electrodes revealed a good selectivity for Fe(II) over a wide variety of other metal ions and could be used in the pH range of 1.8 - 3.0 without any divergence in potential. The proposed sensors were successfully applied for the determination of Fe(II) ion in different real samples.
Cite this paper: R. Aglan, M. Rizk, G. Mohamed, A. El-Wahy and H. Mohamed, "Preparation and Properties of a New Carbon Paste Iron Selective Electrodes and Their Applications," American Journal of Analytical Chemistry, Vol. 5 No. 2, 2014, pp. 140-148. doi: 10.4236/ajac.2014.52017.

[1]   P. T. Lieu, M. Heiskala, P. A. Peterson and Y. Yang, “The Roles of Iron in Health and Disease,” Molecular Aspects of Medicine, Vol. 22, No. 1-2, 2001, pp. 1-87.

[2]   S. R. Taylor and S. M. Mcleeal, “The Continental Crust: Its Composition and Evolution,” Blackwell, London, 1985.

[3]   W. H. Mahmoud, “Iron Ion-Selective Electrodes for Direct Potentiometry and Potentiotitrimetry in Pharmaceuticals,” Analytica Chimica Acta, Vol. 436, No. 2, 2001, pp. 199-206.

[4]   J. Mortatti, F. J. Krug, L. C. R. Pessenda, E. A. G. Zagatto and S. S. Jorgensen, “Determination of Iron in Natural Waters and Plant Material with 1,10-Phenanthroline by Flow Injection Analysis,” Analyst, Vol. 107, No. 1275, 1982, pp. 659-663.

[5]   Z. T. Zeng and R. A. Jewsbury, “Fluorimetric Determination of Iron Using 5-(4-Methoxyphenylazo)-8-(4-toluen-esulfonamido)quinoline,” Analyst, Vol. 125, No. 9, 2000, pp. 1661-1665.

[6]   Q. Chen, “Microelements and Health,” Peking University Press, Beijing, 1989, p. 132.

[7]   A. V. Kozlov, D. Y. Yegorov, Y. A. Vladimirov and O. A. Azizova, “Intracellular Free Iron in Liver Tissue and Liver Homogenate: Studies with Electron Paramagnetic Resonance on the Formation of Paramagnetic Complexes with Desferal and Nitric Oxide,” Biology and Medicine, Vol. 13, No. 1-2, 1992, pp. 9-16.

[8]   Z. O. Tesfaldet, J. F. Van Staden and R. I. Stefan, “Sequential Injection Spectrophotometric Determination of Trace Amounts of Iodide by Its Catalytic Effect on the 4,4’-Methylenebis(N,N-dimethylaniline)-chloramine-T-Reaction,” Talanta, Vol. 64, No. 5, 2004, pp. 1189-1195.

[9]   A. Huberman and C. Perez, “Nonheme Iron Determination,” Analytical Biochemistry, Vol. 307, 2002, pp. 375-378.

[10]   T. D. Waite and F. M. Morel, “Coulometric Technique for Studying the Redox Dynamics of Iron in Seawater,” Analytical Chemistry, Vol. 56, No. 4, 1984, pp. 787-792.

[11]   Z. Yi, G. Zhuang, P. R. Brown and R. A. Duce, “High-Performance Liquid Chromatographic Method for the Determination of Ultratrace Amounts of Iron(II) in Aerosols, Rainwater, and Seawater,” Analytical Chemistry, Vol. 64, No. 22, 1992, pp. 2826-2830.

[12]   P. L. Croot and P. Laan, “Continuous Shipboard Determination of Fe(II) in Polar Waters Using Flow Injection Analysis with Chemiluminescence Detection,” Analytica Chimica Acta, Vol. 466, No. 2, 2002, pp. 261-273.

[13]   J. Xu, P. Che and Y. F. Ma, “More Sensitive Way to Determine Iron Using an Iron(II)-1,10-phenanthroline Complex and Capillary Electrophoresis,” Journal of Chromatography A, Vol. 749, No. 1-2, 1996, pp. 287-294.

[14]   G. H. Zhu, Z. C. Zhu and L. F. Qiu, “A Fluorometric Method for the Determination of Iron(II) with Fluorescein Isothiocyanate and Iodine,” Analytical Sciences, Vol. 18, No. 9, 2002, pp. 1059-1061.

[15]   S. Y. Bao, G. H. Wang, B. S. Liu, H. Sun, Y. Huang and S. Shi, Chinese Journal of Spectroscopy and Spectral Analysis, Vol. 1, 2001, p. 87.

[16]   I. G. Švegl and B. Ogorevc, “Soil-Modified Carbon Paste Electrode: A Useful Tool in Environmental Assessment of Heavy Metal Ion Binding Interactions,” Journal of Analytical Chemistry, Vol. 367, No. 8, 2000, pp. 701-706.

[17]   P. M. Bersier, J. Howell and C. Bruntlett, “Advanced Electroanalytical Techniques versus Atomic Absorption Spectrometry, Inductively Coupled Plasma Atomic Emission Spectrometry and Inductively Coupled Plasma Mass Spectrometry in Environmental Analysis,” Analyst, Vol. 119, No. 2, 1994, pp. 219-232.

[18]   I. Svancara, K. Vytras, K. Kalcher, A. Walcarius and J. Wang, “Carbon Paste Electrodes in Facts, Numbers, and Notes: A Review on the Occasion of the 50-Years Jubilee of Carbon Paste in Electrochemistry and Electroanalysis,” J. Electroanalysis Vol. 21, No. 1, 2009, pp. 7-28.

[19]   M. J. Gismera, D. Hueso, J. R. Procopio and M. T. Sevilla, “Ion Selective Carbon Paste Electrode Based on Tetraethyl Thiuram Disulfide for Copper(II) and Mercury (II),” Analytica Chimica Acta, Vol. 524, No. 1-2, 2004, pp. 347-353.

[20]   C. Thobie-Gautier, W. T. Lopes da Silva, M. O. O. Rezende and N. E. Murr, “Sensitive and Reproducible Quantification of Cupper by Stripping with a Carbon Paste Electrode Modified with Humic Acid,” Journal of Environmental Science and Health, Part A, Vol. 38, No. 9, 2003, pp. 1811-1823.

[21]   A. H. M. Elwahy, A. A. Abbas and Y. A. Ibrahim, “Synthesis of New Dibenzo Nitrogen-Oxygen-Sulfur Macrocucles Containing Two Triazole Rings,” Journal of Chemical Research, No. 4, 1996, pp. 182-183.

[22]   A. H. M. Elwahy, A. A. Abbas and R. M. Kassab, “Synthesis of Novel Macrocyclic Di-and Tetralactams Containing Triazole Subunits,” Heteroatom, Vol. 14, No. 6, 2003, pp. 551-559.

[23]   R. F. Aglan, G. G. Mohamed and H. A. Mohamed, “Chemically Modified Carbon Paste Electrode for Determination of Cesium Ion by Potentiometric Method,” American Journal of Analytical Chemistry, Vol. 3, No. 8, 2012, pp. 576-586.

[24]   J. Jezek, J. W. Dilleen, B. G. D. Haggett, A. G. Fogg and B. J. Birch, “Hexacyanoferrate(III) as a Mediator in the Determination of Total Iron in Potable Waters as Iron(II)- 1,10-Phenanthroline at A Single-Use Screen-Printed Carbon Sensor Device,” Talanta, Vol. 71, No. 1, 2007, pp. 202-207.

[25]   A. Abbaspour, A. R. Esmaeilbeig, A. A. Jarrahpour, B. Khajeh and R. Kia, “Aluminium(III)-Selective Electrode Based on a Newly Synthesized Tetradentate Schiff Base,” Talanta, Vol. 58, No. 2, 2002, pp. 397-403.

[26]   M. B. Saleh, S. S. M. Hassan, A. A. Abdel Gaber and N. A. Abdel Kream, “Novel Potentiometric Membrane Sensor for Selective Determination of Aluminum(III) Ions” Analytica Chimica Acta, Vol. 434, No. 2, 2001, pp. 247-253.

[27]   V. Babenikov, L. Bykova and L. Evsevleeva, “Aluminum-Selective Electrode,” Journal of Analytical Chemistry, Vol. 60, No. 9, 2005, pp. 866-867.

[28]   R. Eugster, T. Rosatzin, B. Rusterholz, B. Aebersold, U. Pedrazza, D. Ruegg, A. Schmid, U. E. Spichiger and W. Simon, “Plasticizers for Polymeric Liquid Membranes of Ion Selective Chemical Sensors,” Analytica Chimica Acta, Vol. 289, No. 1, 1994, pp. 1-13.

[29]   P. R. Buck and E. Lindner, “Recommendations for Nomenclature of Ionselective Electrodes,” Pure and Applied Chemistry, Vol. 66, No. 12, 1994, pp. 2527-2536.

[30]   M. Aghaie, M. Giahi, H. Aghaie, M. Arvand, M. Pournaghdy and F. Yavari, “New Fe(II) Ionselective Electrode Based on N-Phenylaza-15Crown5 as Neutral Carrier in PVC Matrix,” Desalination, Vol. 247, No. 1-3, 2009, pp. 346-354.