[1] B. E. Logan, S. E. Oh, I. Kim and S. Van Ginkel, “Biological Hydrogen Production Measured in Batch Anaerobic Respirometers,” Environmental Science & Technology, Vol. 36, No. 11, 2002, pp. 2530-2535.
http://dx.doi.org/10.1021/es015783i
[2] J. Mata-Alvarez, F. Cecchi, P. Llabrés and P. Pavan, “Anaerobic Digestion of the Barcelona Central Food Market Organic Wastes: Plant Design and Feasibility Study,” Bioresource Technology, Vol. 42, No. 1, 1992, pp. 33-42. http://dx.doi.org/10.1016/0960-8524(92)90085-C
[3] S. N. Misi and C. F. Forster, “Semi-Continuous Anaerobic Co-Digestion of Agro-Waste,” Environmental Technology, Vol. 23, No. 1, 2002, pp. 445-451.
[4] H. Bouallagui, R. BenCheikh, L. Marouani and M. Hamdi, “Mesophilic Biogas Production from Fruit and Vegetable Waste in Tubular Digester,” Bioresource Technology, Vol. 86, No. 1, 2003, pp. 85-90.
http://dx.doi.org/10.1016/S0960-8524(02)00097-4
[5] H. Bouallagui, Y. Touhami, R. BenCheikh and M. Hamdia, “Bioreactor Performance in Anaerobic Digestion of Fruit and Vegetable Wastes: Review,” Process Biochemistry, Vol. 40, No. 3-4, 2005, pp. 989-995.
http://dx.doi.org/10.1016/j.procbio.2004.03.007
[6] E. I. Garcia-Peña, P. Parameswaran, D. W. Wang, M. Canul-Chan and R. Krajmalnik-Brown, “Anaerobic Digestion and Codigestion Process of Vegetable and Fruits Residues: Process and Microbial Ecology,” Bioresource Technology, Vol. 102, No. 20, 2011, pp. 9447-9455.
http://dx.doi.org/10.1016/j.biortech.2011.07.068
[7] V. S. Mohan, G. Mohanakrishna, R. K. Goud and P. N. Sarma, “Acidogenic Fermentation of Vegetable Based Market to Harness Biohydrogen with Simultaneous Stabilization,” Bioresource Technology, Vol. 100, No. 12, 2009, pp. 3061-3068.
http://dx.doi.org/10.1016/j.biortech.2008.12.059
[8] S. W. Van Ginkel, S. E. Oh and B. E. Logan, “Biohydrogen Gas Production from Food Processing and Domestic Wastewaters,” International Journal of Hydrogen Energy, Vol. 30, No. 15, 2005, pp. 1535-1542.
http://dx.doi.org/10.1016/j.ijhydene.2004.09.017
[9] K. Vijayaraghavan, D. Ahmad and C. Soning, “Bio-Hydrogen Generation from Mixed Fruit Peel Waste Using Anaerobic Contact Filter,” International Journal of Hydrogen Energy, Vol. 32, No. 18, 2007, pp. 4754-4760.
http://dx.doi.org/10.1016/j.ijhydene.2007.07.001
[10] P. Yang, R. Zhang, J. A. McGarveyc and J. R. Benemann, “Biohydrogen Production from Cheese Processing Wastewater by Anaerobic Fermentation Using Mixed Microbial Communities,” International Journal of Hydrogen Energy, Vol. 32, No. 18, 2007, pp. 4761-4771.
http://dx.doi.org/10.1016/j.ijhydene.2007.07.038
[11] G. Mohanakrishna, R. Kannaiah Goud, S. Mohan and P. N. Sarma, “Enhancing Biohydrogen Production through Sewage Supplementation of Composite Vegetable Based Market Waste,” International Journal of Hydrogen Energy, Vol. 35, No. 2, 2010, pp. 533-541.
http://dx.doi.org/10.1016/j.ijhydene.2009.11.002
[12] B. Ruggeri and T. Tommasi, “Efficiency and Efficacy of Pre-Treatment and Bioreaction for Bio-H2 Energy Production from Organic Waste,” International Journal of Hydrogen Energy, Vol. 37, No. 8, 2012, pp. 6491-6502.
http://dx.doi.org/10.1016/j.ijhydene.2012.01.049
[13] E. I. Garcia Peña, M. Canul-Chan, I. Chairez, E. Salgado and J. Aranda, “Continuous Bio-Hydrogen Production Based on the Evaluation of Kinetic Parameters of a Mixed Microbial Culture Using Fruit and Vegetable Wastes as Feedstock,” Biomass Bioenergy, 2013.
[14] H. A. El-Mansy, A. M. Sharoba, H. E. L. M. Bahlol and A. I. El-Desouky, “Rheological Properties of Mango and Papaya Nectar Blends,” Annals of Agricultural Science, Moshtohor, Vol. 43, No. 2, 2005, pp. 665-686.
[15] G. C. Antonio, F. R. Faria, C. Y. Takeiti and K. J. Park, “Rheological Behavior of Blueberry,” Ciencia e Tecnologia de Alimentos, Vol. 29, No. 4, 2007, pp. 723-737.
[16] C. L. Nindo, J. Tang, J. R. Powers and P. S. Tlakhar, “Rheological Properties of Blueberry Puree for Prossesing Application,” LWT, Vol. 40, No. 2, 2007, pp. 292-299.
http://dx.doi.org/10.1016/j.lwt.2005.10.003
[17] R. D. Andrade, R. Torres, E. J. Montes and O. A. Perez, “Effect of Temperature on the Rheological Behavior of Zapote Pulp (Calocarpum sapota Merr),” Revista Tecnica de la Universidad de Zulia, Vol. 33, No. 2, 2010, pp. 138-144.
[18] R. Maceiras, E. Alvarez and M. A. Candela, “Rheological Properties of Fruit Purees: Effect of Cooking,” Journal of Food Engineering, Vol. 80, No. 3, 2006, pp. 763-769.
http://dx.doi.org/10.1016/j.jfoodeng.2006.06.028
[19] M. C. Sanchez, C. Valencia, A. Ciruelos, A. Latorre and C. Gallegos, “Rheological Properties of Tomato Paste: Influence of the Addition of Tomato Slurry,” Journal of Food Science, Vol. 68, 2006, pp. 551-554.
http://dx.doi.org/10.1111/j.1365-2621.2003.tb05710.x
[20] J. Ahmed, “Effect of Temperature on Rheological Characteristics of Ginger Paste,” Emirates Journal of Agricultural Sciences, Vol. 16, No. 1, 2004, pp. 43-49.
[21] J. Ahmed, Gangopadhaya and U. S. Shivhare, “Effect of Temperature on Rheological Characteristics of Green Chili Puree,” Journal of Food Science and Technology, Vol. 36, 1999, pp. 352-354.
[22] M. Fraiha, J. D. Biagi and A. C. de Oliveira, “Rheological Behavior of Corn and Soy Mix as Feed Ingredients,” Ciencia e Tecnologia de Alimentos, Vol. 31, No. 1, 2011, pp. 129-134.
http://dx.doi.org/10.1590/S0101-20612011000100018
[23] Ansys Fluent Inc., “Fluent 13.0.,” Lebanon, 2010.
[24] B. Wu, “Advances in the CFD to Characterize Design and Optimize Bioenergy Systems,” Computers and Electronics in Agriculture, Vol. 93, 2013, pp. 195-208.
http://dx.doi.org/10.1016/j.compag.2012.05.008
[25] P. Mavros, “Flow Visualization in Stirred Vessels. A Review of Experimental Techniques,” Chemical Engineering Research and Design, Vol. 79, No. 2, 2001, pp. 113-127.
http://dx.doi.org/10.1205/02638760151095926
[26] E. L. Paul, V. A. Atiemo-Obeng and S. M. Kresta, “Handbook of Industrial Mixing,” Science and Practice Wiley, New York, 2004.
[27] T. Nagafune and Y. Hirata, “Measurement of Cavern Sizes and Shape in Agitated Yield Stress Aqueous Solutions with an Electrochemical Probe,” 14th European Conference on Mixing Warszawa, 10-13 September 2012.
[28] E. Galindo and A. W. Nienow, “Mixing of Highly Viscous Simulated Xanthan Fermentation Broths with the Lightnin A-315 Impeller,” Biotechnology Progress, Vol. 8, No. 3, 1992, pp. 233-239.
http://dx.doi.org/10.1021/bp00015a009
[29] W. Kelly and B. Gigas, “Using CFD to Predict the Behavior of Power Law Fluids near Axial-Flow Impellers Operating in the Transitional Flow Regime,” Chemical Engineering Science, Vol. 58, No. 10, 2003, pp. 2141-2152.
http://dx.doi.org/10.1016/S0009-2509(03)00060-5
[30] S. J. Curran, R. E. Hayes, A. Afacan, M. C. Williams and P. A. Tanguy, “Properties of Carbopol Solutions as Model for Yield-Stress Fluids,” Journal of Food Science, Vol. 67, No. 1, 2002, pp. 176-180.
http://dx.doi.org/10.1111/j.1365-2621.2002.tb11379.x
[31] R. D. Andrade-Pizarro, R. Torres, E. J. Montes, O. A. Perez, C. E. Bustamante and B. B. Mora, “Effect of Temperature on the Rheological Behavior of Zapote Pulp (Calocarpum sapota Merr),” Revista Técnica de la Facultad de Ingeniería Universidad del Zulia, Vol. 33, No. 2, 2010, pp. 138-144.
[32] B. Metzner and R. E. Otto, “Agitation of Non-Newtonian Fluids,” AICHE Journal, Vol. 3, No. 1, 1975, pp. 3-11.
http://dx.doi.org/10.1002/aic.690030103