[1] F. Jensen, “Introduction to Computational Chemistry,” John Wiley and Sons Ltd, Chichester, 2007.
[2] E. Boronski and R. M. Nieminen, “Electron-Positron Density-Functional Theory,” Physical Review B, Vol. 34, No. 6, 1985, pp. 3820-3831.
http://dx.doi.org/10.1103/PhysRevB.34.3820
[3] H. Yukawa, “On the Interaction of Elementary Particles,” Progress of Theoretical Physics Supplement, Vol. 1, 1955, pp. 24-45. http://dx.doi.org/10.1143/PTPS.1.24
[4] W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Physical Review Journal, Vol. 140, No. 4A, 1965, pp. A1133-A1138.
http://link.aps.org/doi/10.1103/PhysRev.140.A1133
[5] S. Daiuk, M. Sob and A. Rubaszek, “Theoretical calculations of positron annihilation with rare gas core electrons in simple and transition metals,” Journal of Physics F: Metal Physics B, Vol. 43, No. 4, 1991, pp. 2580-2593.
http://link.aps.org/doi/10.1103/PhysRevB.43.2580
[6] M. J. Puska and R. M. Nieminen, “Defect Spectroscopy with Positron: A General Calculation Method,” Journal of Physics F: Metal Physics, 1983, pp. 333-346.
http://dx.doi.org/10.1088/0305-4608/13/2/009
[7] A. Gil, J. Segura and N. Temme, “Numerical Methods for Special Functions,” Society for Industrial Mathematics, 3600 University Science Center, Philadelphia., 2007.
[8] N. W. Ashcroft and N. D. Mermin, “Solid State Physics,” Thomson Learning, Inc., 1976.
[9] V. Magnasco, “Methods of Molecular Quantum Mechanics,” John Wiley and Sons Ltd, Hoboken, 2009.
http://dx.doi.org/10.1002/9780470684559
[10] G. F. Gribakin and C. M. R. Lee, “Application of the zero-range potential model to positron annihilation on molecules,” Nuclear Instruments and Methods in Physics Research B, Vol. 247, No. 1, 2006, pp. 31-37.
http://dx.doi.org/10.1016/j.nimb.2006.01.035m
[11] E. M. Hassan, B. A. A. Balboul and M. A. Abdel-Rahman, “Probing the Phase Transition in Nanocrystalline TiO2 Powders by Positron Lifetime (PAL) Technique,” Defect and Diffusion Forum, Vol. 319-320, 2011, pp 151-159.