ABB  Vol.5 No.1 , January 2014
Inoculation with arbuscular mycorrhizal fungi improves seedlings growth of two sahelian date palm cultivars (Phoenix dactylifera L., cv. Nakhla hamra and cv. Tijib) under salinity stresses

This study presents an analysis of the impact of mycorrhizal inoculation on growth under salt stress of date palms cultivars Nakhla hamra (NHH) and Tijib known in the Sahel for their earliness in flowering and fruiting. The seedlings were grown in a greenhouse on a sandy substrate watered to field capacity every two days and were subjected to increasing levels of NaCl (0, 1, 2, 4, 6, 8 and 16 g·L-1) and then inoculated with 5 strains of Glomus (G. aggregatum, G. intraradices, G. verriculosum, G. mosseae, G. fasciculatum). The experimental design was a randomized complete block with three factors (cultivars: Tijib and Nakhla Hamra x seven levels of NaCl concentrations x six levels of inoculum). The results showed that in the absence of NaCl, G. verriculosum significantly enhanced shoot growth: 33.5 cm against 30.3 cm in the control and roots growth: 81.5 cm against 78 cm in NHH, while in Tijib, the growth is stimulated by Glomus fasciculatum: 33.8 cm against 32.7 cm for stems and 90 cm against 86 cm for the roots of inoculated plants and controls. In contrast, in the presence of NaCl 8 g·L-1, NHH has a better growth in the presence of G. intraradices: 37.3 cm against 30.6 cm for stems and 77 cm against 73 for roots, while Tijib grows better in the presence of G. fasciculatum with respectively 31.9 cm against 31.7 cm and 51.27 cm against 51.6 cm for stems and roots of inoculated plants and controls. Biochemical analysis revealed that changes in levels of proline depend on the cultivar, the mycorrhizal strain used and concentrations of NaCl applied. These results open the prospect of using mycorrhizal fungi to improve the productivity of palm trees in the Sahel.

Cite this paper
Djitiningo Diatta, I. , Kane, A. , Agbangba, C. , Sagna, M. , Diouf, D. , Aberlenc-Bertossi, F. , Duval, Y. , Borgel, A. and Sane, D. (2014) Inoculation with arbuscular mycorrhizal fungi improves seedlings growth of two sahelian date palm cultivars (Phoenix dactylifera L., cv. Nakhla hamra and cv. Tijib) under salinity stresses. Advances in Bioscience and Biotechnology, 5, 64-72. doi: 10.4236/abb.2014.51010.
[1]   Munier, P. (1973) Le palmier dattier. Techniques Agricoles et Productions Tropicales. Paris 5eme, Maisonneuve et Larose, 217.

[2]   Heselmans, M. (1997) Setting research priorities through an international date palm network. Biotechnology and Development Monitor, 30,18-20.

[3]   Ould Sidina, C. (1999) Présentation des oasis mauritaniennes. In: Agroéconomie des Oasis, Groupe de Recherche et d’Information pour le Développement de l’Agriculture d’Oasis (GRIDAO-CIRAD), eds, 49-51.

[4]   Barbiero, L., Mohamedou, A. O., Laperrousaz, C., Furian, S. and Cunnac, S. (2004) Polyphasic origin of salinity in the Senegal delta and middle valley. Catena, 58, 101-124.

[5]   F.A.O. (2005) Global network on integrated soil management for sustainable use of saltaffected soils.

[6]   Ferry, M., Bouguedoura, N. and El Hadrami, I. (1998) Patrimoine génétique et techniques de propagation in vitro pour le développement du palmier dattier. Sécheresse, 9, 139-146.

[7]   Sané, D., Ould Kneyta, M., Diouf, D., Diouf, D., Badiane, F. A., Sagna, M. and Borgel, A. (2005) Growth and development of date palm (Phoenix dactylifera L.) seedlings under drought and salinity stresses. African Journal of Biotechnology, 4, 968-972.

[8]   Yamato, M., Ikeda, S. and Iwase, K. (2008) Community of arbuscular mycorrhizal fungi in coastal vegetation on Okinawa Island and effect of the isolated fungi on growth of sorghum under salt-treated conditions. Mycorrhiza, 18, 241-249.

[9]   Daei, G., Ardekani, M.R., Rejali, F., Teimuri, S. and Miransari, M. (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. Journal of Plant Physiology, 166, 617-625.

[10]   Wang, F.Y., Liu R.J., Lin, X.G. and Zhou, J.M. (2004) Arbuscular mycorrhizal status of wild plants in salinealkaline soils of the Yellow River Delta. Mycorrhiza, 14, 133-137.

[11]   Diop, T. A., Guèye M., Dreyfus, B. L., Plenchette, C. and Strullu, D. G. (1994) Indigenous arbuscular mycorrhizal fungi associated with Accacia albida Del. In different areas of Senegal. Applied and Environmental Microbiology, 60, 3433-3436.

[12]   Diouf, D., Forestier, S., Neyra, M., and Lesueur, D. (2003) Optimisation of inoculation of Leucaena leucocephala and Acacia mangium with rhizobium under greenhouse conditions. Annals of Forest Science, 60, 379-384.

[13]   Phillips, I.M. and Hayman, D.S. (1970). Improved procedures for clearing and staining parasitic and vesiculararbuscular mycorrhizal fungi for rapid assessement of infection. Transactions of the British Mycological Society, 55, 158-161.

[14]   Giovannetti, M. and Mosse, B. (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New physiologist, 84, 489-500.

[15]   Trouvelot, A., Kough, J.L. and Gianinazzi-Pearson, V. (1986) Mesure du taux de mycorhization ayant une signification fonctionnelle. Dans: Aspects physiologiques et génétiques des mycorhizes, Dijon, 1985. INRA (éd.), 217-221.

[16]   Monneveaux, P. and Nemmar, M. (1986) Contribution à l’étude de la résistance à la sécheresse chez le blé tendre (Triticum aestivum L.) et le blé dur (Triticum durum Desf.). Etude de l’accumulation de proline au cours du développement. Agronomie, 6, 583-590.

[17]   Promila, K. and Kumar, S. (2000) Vigna radiata seed germination under salinity. Biol. Plant, 43, 423-426.

[18]   Cheikh M’Hahmedi, H., Abdellaoui, R., Kadri, K., Ben Naceur, M. and Bel Hadj, S. (2008) Evaluation de la tolérance au stress salin de quelques accessions d’orge (Hordeum vulgare l.) cultivées en Tunisie: Approche physiologique. Sciences & Technologie C, 28, 30-37.

[19]   Ruiz-Lozano, J.M. (2003) Arbuscular mycorrhizal symbiosys and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza, 13, 309-317.

[20]   Fortin, J. A., Plenchette, C. and Piché, Y. (2008) Les mycorhizes, la nouvelle révolution verte. Eds. Multimondes et Quae, 131.

[21]   Smith, S. E. and Read, D. J. (2008) Mycorrizal symbiosis, 3rd Edition, Academic Press, Waltham.

[22]   Hammer, E. C., Nasr, H., Pallon, J., Olsson, P. A. and Wallander, H. (2010) Elemental Composition of Arbuscular Mycorrhizal Fungi from with Excessive Salinity. In: Tryckeriet I E-hyset, Lund. Nutriment Balance and Salinity Stress in Arbuscular Mycorrhizal Fungi, 105-122.

[23]   Evelin, H., Kapoor, R. and Giri, B. (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: A review. Annals of Botany, 104, 1263-1280.

[24]   Cavalcante, U.M.T., Maia, L.C., Costa, C.M.C and Santos, V.F. (2001) Mycorrhizal dependency of passion fruit (Passiflora edulis f. flavicarpa). Fruits, 56, 317-324.

[25]   Graham, J.H. and Syvertsen, J.P. (1989) Vesicularar-buscular mycorrhiza increase chloride concentration in citrus seedlings. New Phytologist, 113, 29-36.

[26]   Coperman, R.H., Martin, C.A. and Sutz, J.C. (1996) Tomato growth in response to salinity and mycorrhizal fungi from saline or nonsaline soils. Hortscience, 31, 341-344.

[27]   Juniper, S. and Abbott, L.K. (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza, 16, 371-379.

[28]   Slama, I., Messedi, D., Ghnaya, T. and Abdely, C. (2004) Effet du déficit hydrique sur la croissance et l’accumulation de la proline chez Sesuvium portulacastrum. Revue des Régions Arides, 1, 234-241.

[29]   Bidai, Y. (2001) Le métabolisme de la proline chez l’Atriplex halimus L. stressée à la salinité. Mémoire de magister en Physiologie Végétale, Université Es-Senia, Oran.

[30]   Hubac, C. and Viera and Da Silva, J. (1980) Indicateurs métaboliques de contraintes mésologiques. Physiologie Végétale, 18, 45-53.

[31]   Boggess, S.F. and Stewart, C.R. (1976) Contribution of arginine to proline accumulation in water stressed barley leaves. Plant Physiology, 58, 796-797.