MR  Vol.2 No.1 , January 2014
Microscopic Study of Defect Luminescence between 0.72 - 0.85 eV by Optical Microscopy

In this contribution, an experimental setup to investigate the defect luminescence between 0.72 - 0.85 eV of single defects in Silicon by optical microscopy is introduced. For this purpose, an optical microscope is equipped with an InGaAs CCD detector and a longpass filter with a cut-off wavelength at 1450 nm in order to filter out the band-to-band luminescence at around 1.1 eV. Grain boundaries showing homogeneous distributed defect luminescence can be localized at a μm-scale.

Cite this paper
Lausch, D. and Hagendorf, C. (2014) Microscopic Study of Defect Luminescence between 0.72 - 0.85 eV by Optical Microscopy. Microscopy Research, 2, 9-12. doi: 10.4236/mr.2014.21002.
[1]   D. Lausch, K. Petter, B. Henke, R. Bakowskie, S. Schweizer and C. Hagendorf, “Classification of Recombination Active Defect Structures in Multicrystalline Silicon Solar Cells,” Energy Procedia, Vol. 8, 2011, pp. 28- 34.

[2]   H.-J. M?ller, “Multicrystalline Silicon for Solar Cells,” Solid State Phenomena, Vol. 47-48, 1996, pp. 127-142.

[3]   S. Kusanagi, T. Sekiguchi, B. Shen and K. Sumino, “Electrical Activity of Extended Defects and Gettering of Metallic Impurities in Silicon,” Materials Science and Technology, Vol. 11, No. 7, 1995, pp. 682-690.

[4]   O. Breitenstein, J. Bauer, K. Bothe, W. Kwapil, D. Lausch, U. Rau, J. Schmidt, M. Schneemann, M. C. Schubert, J.-M. Wagner and W. Warta, “Understanding Junction Breakdown in Multicrystalline Solar Cells,” Journal of Applied Physics, Vol. 109, No. 7, 2011, Article ID: 071101.

[5]   T. Fuyuki, H. Kondo, T. Yamazaki, Y. Takahashi and Y. Uraoka, “Photographic Surveying of Minority Carrier Diffusion Length in Polycrystalline Silicon Solar Cells by Electroluminescence,” Applied Physics Letters, Vol. 86, No. 26, 2005, Article ID: 262108.

[6]   T. Trupke, et al., “Progress with Luminescence Imaging for the Characterisation of Silicon Wafers and Solar Cells,” 22nd EU-PVSEC, Milan, 2007, pp. 1309-1313.

[7]   K. Bothe, K. Ramspeck, D. Hinken, C. Schinke, J. Schmidt, S. Herlufsen, R. Brendel, J. Bauer, J.-M. Wagner, N. Zakharov and O. Breitenstein, “Luminescence Emission from Forward- and Reverse-Biased Multicrystalline Sili- con Solar Cells,” Journal of Applied Physics, Vol. 106, No. 10, 2009, Article ID: 104510.

[8]   M. C. Schubert, et al., “Analysis of Performance Limiting Material Properties of Multicrystalline Silicon,” Solar Energy Materials and Solar Cells, Vol. 94, No. 9, 2010, pp. 1451-1456.

[9]   S. Johnston, F. Yan, D. Dorn, K. Zaunbrecher, M. Al- Jassim, O. Sidelkheir and K. Ounadjela, “Comparison of Photoluminescence Imaging on Starting Multi-Crystalline Silicon Wafers to Finished Cell Performance,” 38th IEEE Photovoltaic Specialists Conference, Austin, Piscataway, 3-8 June 2012, pp. 000406-000410.

[10]   D. Lausch, K. Petter, R. Bakowskie, J. Bauer, O. Breitenstein and C. Hagendorf, “Classification and Investigation of Recombination Active Defect in Multicrystalline Silicon Solar-Cells,” Proceedings of the 27th EUPVSEC, Frankfurt, 25-28 September 2012, pp. 723-728.

[11]   K. Bothe, R. J. Falster and J. D. Murphy, “Room Temperature Sub-Bandgap Photoluminescence from Silicon Containing Oxide Precipitates,” Applied Physics Letters, Vol. 101, No. 3, 2012, pp. 032107-032107-4.

[12]   F. Dreckschmidt and H.-J. M?ller, “Defect Luminsecence at Grain Boundaries in Multicrystalline Silicon,” Physica Status Solidi (C), Vol. 8, No. 4, 2011, pp. 1356-1360.

[13]   D. Mankovics, et al., “Luminescence Emission from Forward- and Reverse-Biased Multicrystalline Silicon Solar Cells,” Physica Status Solidi (A), Vol. 209, No. 10, 2012, p. 1908.

[14]   D. Lausch, K. Petter, H. V. Wenckstern and M. Grundmann, “Correlation of Pre-Breakdown Sites and Bulk Defects in Multicrystalline Silicon Solar Cells,” Physica Status Solidi (RRL), Vol. 3, No. 2-3, 2009, pp. 70-72.

[15]   R. P. Schmid, D. Mankovics, T. Arguirov, M. Ratzke, T. Mchedlidze and M. Kittler, “Rapid Dislocation-Related D1-Photoluminescence Imaging of Multicrystalline Si Wafers at Room Temperature,” Physica Status Solidi A, Vol. 208, No. 4, 2011, pp. 888-892.