JMP  Vol.5 No.2 , January 2014
Nitrogen Discharged from the Earth’s Interior Regions
Author(s) Mikio Fukuhara*

The abundant nitrogen in the Earth’s atmosphere can be interpreted as the result of endothermic nuclear transmutation of carbon and oxygen atom pairs in (Ca, D) CO3 or CaCO3 aragonite lattice of Earth’s crust from the Archean era to the present time, by physical catalytic help of excited electrons e* generated by stick sliding due to plate tectonics and geoneutrinos ν by the radioactive decay of elements such as uranium and thorium in Earth’s mantle: through a nuclear attraction effect that is due to deuteron catalysis of nitrogen formation. The relationship between the critical temperature T and the critical pressure P for the nuclear transmutation is expressed as 7253 × e-0.014P, and the formation of nitrogen in the mantle is possible at temperatures ≥ 2510 K and pressure ≥ 58 GPa.

Cite this paper
M. Fukuhara, "Nitrogen Discharged from the Earth’s Interior Regions," Journal of Modern Physics, Vol. 5 No. 2, 2014, pp. 75-81. doi: 10.4236/jmp.2014.52012.
[1]   R. O. Pepin, “Atmospheric Compositions: Key Similarities and Differences,” In: S. K. Atreya, et al., Ed., Origin and Evolution of Planetary and Satellite Atmospheres, University of Arizona Press, Tucson, 1989, pp. 291-305.

[2]   J. A. Tyburezy, B. Frisch and T. J. Ahrens, Earth and Planetary Science Letters, Vol. 80, 1986, pp. 201-207.

[3]   C. C. Delwiche, Scientific American, Vol. 223, 1970, pp. 137-146.

[4]   P. Warneck, “Chemistry of the Natural Atmosphere,” 2nd Edition, Academic Press, New York, 1998, p. 605.

[5]   D. E. White and G. A. Waring, “Volcanic Emanations,” U. S. Geological Survey Prof. Paper, 1963, p. 440.

[6]   M. I. Budyko, A. B. Ronov and A. L. Yanshin, “History of the Earth’s Atmosphere,” Springer-Verlag, New York, 1985, p. 2, 16.

[7]   T. Ogawa, “Physical Chemistry of Atmosphere,” Tokyo Do, Tokyo, 1991, p. 4. (in Japanese)

[8]   M. Fukuhara, “Possible Nuclear Transmutation of Nitrogen in Atmosphere,” Proceedings of the 4th Meeting of Japan CF Research Society, Iwate University, 11-12 December 2002, pp. 63-67.

[9]   M. Fukuhara, Nuovo Cimento, Vol. 27C, 2004, pp. 99-113.

[10]   A. Bohr and B. R. Mottelson, “Nuclear Structure,” Single-Particle Motion, Vol. 1, W. A. Benjamin, Amsterdam, 1969, p. 168.

[11]   A. Benlow and A. Meadows, Journal of Astrophysics and Space Science, Vol. 46, 1977, pp. 293-300.

[12]   T. Owen, R. D. Cess and V. Ramanathan, Nature, Vol. 277, 1979, pp. 640-642.

[13]   C. J, Allégre, B. Dupré and O. Brévart, Transactions of the Royal Society of London, Series A, Vol. 306, 1982, pp. 49-59.

[14]   M. I. Budyko, A. B. Ronov and A. L. Yanshin, “History of the Earth’s Atmosphere,” Springer-Verlag, New York, 1985, p. 16, 128.

[15]   J. F. Kasting and T. P. Ackerman, Science, Vol. 234, 1986, pp. 1383-1385.

[16]   J. F. Kasting, Precambrian Research, Vol. 34, 1987, pp. 205-229.

[17]   H. Ohmoto, Kagaku (in Japanese), Vol. 14, 1994, pp. 360-370.

[18]   D. F. Measday and G. A.Miller, Annual Review of Nuclear and Particle Science, Vol. 29, 1979, pp. 121-160.

[19]   S. E. Jones, E. P. Palmer, J. B. Czirr, D. L. Decker, J. M. Thorne, S. F. Taylor and J. Rafelsli, Nature, Vol. 338, 1989, pp. 737-740.

[20]   J. P. Kenny, Fusion Technology, Vol. 19, 1991, pp. 547-551.

[21]   R. P. Feymann, “The Theory of Fundamental Processes,” Benjamin/Cummings Publishing Company, San Francisco, 1961, p. 37.

[22]   M. Fukuhara, Fusion Science and Technology, Vol. 43, 2003, pp. 128-133.

[23]   M. Fukuhara, “Possible Coexistence of Electron and Electron Neutrino in Nucleus and Its Effect on D-D Cold Fusion into Helium,” Proceedings of the 6th Meeting of Japan CF Research Society, Tokyo Inst. Technology, Tokyo, 27-28 April 2005, pp. 53-57.

[24]   P. Glansdorff and I. Prigogine, “Thermodynamic Theory of Structure, Stability and Fluctuations,” Wiley-Interscience, London, 1971, p. 1.

[25]   C. J. Allégre and S. H. Schneider, Scientific American, Vol. 271, 1994, pp. 44-51.

[26]   M. Fukuhara, “Possible Nuclear Transmutation of Nitrogen in Atmosphere of Earth (II),” Proceedings of the 7th Meeting of Japan CF Research Society, Kagoshima University, Kagoshima, 27-28 April 2006, pp. 71-73.

[27]   Y. Enomoto and H. Hashimoto, Nature, Vol. 346, 1990, pp. 641-643.

[28]   F. T. Freund, A. Takeuchi, B. W. S. Lau, A. Al-Manaseer, C. C. Fu, N. A. Bryant and D. Ouzounov, Earth Discuss, Vol. 1, 2006, pp. 97-121.

[29]   J. N. Brune, S. Brown and P. A. Johnson, Technophysics, Vol. 218, 1993, pp. 59-67.

[30]   A. Tsutsumi and N. Shirai, Tectonophysics, Vol. 450, 2008, pp. 79-84.

[31]   N. Nikolov and K. Zeller, “US Forest Services,” 2013, Private Communication.

[32]   T. Araki, et al., Nature, Vol. 436, 2005, pp. 499-503.

[33]   G. Bellini, et al., Physics Letters B, Vol. 687, 2010, pp. 299-304.

[34]   J. Beringer, et al., Physical Review D, Vol. 86, 2012, Article ID: 010001.

[35]   A. S. Barabash, Physics of Atomic Nuclei, Vol. 74, 2011, pp. 603-613.

[36]   T. D. Lee and C. S. Wu, Annual Review of Nuclear Science, Vol. 15, 1965, pp. 381-476.

[37]   D. Bocklee-Morvan, D. Gautier, D. C. Lis, K. Young, J. Keene, T. Phillips, T. Owen, J. Crovisier, P. F. Goldsmith, E. A. Bergin, D. Despois and A. Wootten, Icarus, Vol. 133, 1998, pp. 147-162.

[38]   L. A. Frank, J. B. Sigwarth and J. D. Craven, Geophysical Research Letters, Vol. 13, 1986, pp. 303-310.

[39]   W. L. Bragg, Proceedings of the Royal Society of London. Series A, Vol. 105, 1924, pp. 16-39.

[40]   K. Suito, J. Namba, T. Horikawa, Y. Taniguchi, N. Sakurai, M. Kobayashi, A. Onodera, O. Shimomura and T. Kikegawa, American Mineralogist, Vol. 86, 2001, pp. 997-1002.

[41]   O. Kennard, “International Tables for X-ray Crystallography,” International Union of Crystallography, Kynoch Press, Birmingham, 1968, p. 276.

[42]   S. Glasstone and D. Lewis, “Elements of Physical Chemistry,” D. Van Nostrand Company, Princeton, 1960, p. 632.

[43]   F. P. Bundy, “Solid State Physics under Pressure: Recent Advance with Devices,” Scientific Publishing Company, Dordrecht, 1985, p. 1.

[44]   E. Ohtani and T. Irifune, “Basic Measurement and Application of Solid Planet Material Science,” In: H. Takeda, H. Kitamura and M. Miyamoto, Eds., Science House, Tokyo, 1994, p. 187.

[45]   P. R. Price, Nature, Vol. 343, 1990, pp. 542-544.

[46]   H. Craig, Geochimica et Cosmochimica Acta, Vol. 3, 1953, pp. 53-92.

[47]   Y. Toriabe, E. Yoshida, J. Kasagi and M. Fukuhara, Physical Review C, Vol. 85, 2012, Article ID: 054620.

[48]   C. Frondel and G. C. Kennedy, “Encyclopedia of the Geological Sciences,” In: D. N. Lapedes, Ed., McGraw-Hill, New York, 1977, P. 155.

[49]   S. Satoh, S. Yazu, K. Tsuji, A. Hara, N. Urakawa and A. Yoshida, Sumitomo Electric Technical Review, Vol. 129, 1986, pp. 99-106.

[50]   J. A. Brandes, N. Z. Boctor, G. D. Cody, B. A. Cooper, R. M. Hazen and H. S. Yoder Jr., Nature, Vol. 395, 1998, pp. 365-367.

[51]   Y. Iwamura, M. Sakano and T. Itoh, Japanese Journal of Applied Physics, Vol. 41, 2002, pp. 4642-4650.

[52]   Y. Iwamura, Mitsubishi Heavy Industries, Private Communication, 2004.

[53]   M. Fukuhara, Japanese Journal of Applied Physics, Vol. 46, 2007, pp. 3035-3038.

[54]   K. Nealson, University of South California, Los Angeles, Private Communication, 2006.

[55]   Ya. B. Zedlovich and I. D. Novikov, “Relativistic Astrophysics,” Vol. 1, Chicago University Press, Chicago, 1971, p. 161.

[56]   M. Fukuhara and G. W. Smith, II, Physica Status Solidi, Vol. 156, 1989, pp. 583-596.

[57]   J. Schwinger, Physical Review A, Vol. 24, 1981, pp. 2353-2361.

[58]   C. Kittel, “Introduction to Solid State Physics,” Sixth Edition, John Wiley & Sons, New York, 1986, p. 62.

[59]   Wikipedia, 2013.