OJSS  Vol.4 No.1 , January 2014
Microorganisms in Small Patterned Ground Features and Adjacent Vegetated Soils along Topographic and Climatic Gradients in the High Arctic, Canada
ABSTRACT

In this study, we determine differences in total biomass of soil microorganisms and community structure (using the most probable number of bacteria (MPN) and the number of fungal genera) in patterned ground features (PGF) and adjacent vegetated soils (AVS) in mesic sites from three High Arctic islands in order to characterize microbial dynamics as affected by cryoturbation, and a broad bioclimatic gradient. We also characterize total biomass of soil microorganisms and the most probable number of bacteria along a topographic gradient within each bioclimatic subzone to evaluate whether differences in topography lead to differences in microbial dynamics at a smaller scale. We found total microbial biomass C, the most probable number of heterotrophic bacteria, and fungal genera vary along this bioclimatic gradient. Microbial biomass C decreased with increasing latitude. Overall, microbial biomass C, MPN and the number of fungal isolates were higher in AVS than in PGFs. The effects which topographic position had on microbial biomass C varied across the bioclimatic gradient as there was no effect of topographic position in Isachsen (subzone A) and Mould Bay (subzone B), when compared to Green Cabin (subzone C, warmer site).There was no effect of topographic position on MPN counts at Mould Bay and Green Cabin. However, in Isachsen, MPN counts were highest in the wet topographic position as compared to the mesic and dry. In conclusion, PGFs seem to decouple the effect climate that might have on the total biomass of soil microorganisms along the bioclimatic gradient; and influence gets ameliorated as latitude increases. Similarly, the effect of topography on the total microbial biomass is significant at the warmest bioclimatic zone of the gradient. Thus, climate and topographic effects on total microbial biomass increase with warmer climate.


Cite this paper
G. González, F. Rivera-Figueroa, W. Gould, S. Cantrell and J. Pérez-Jiménez, "Microorganisms in Small Patterned Ground Features and Adjacent Vegetated Soils along Topographic and Climatic Gradients in the High Arctic, Canada," Open Journal of Soil Science, Vol. 4 No. 1, 2014, pp. 47-55. doi: 10.4236/ojss.2014.41007.
References
[1]   D. A. Walker and D. M. Walker, “History and Pattern of Disturbance in Alaskan Arctic Terrestrial Ecosystems: A Hierarchical Approach to Analyzing Landscape Change,” Journal of Applied Ecology, Vol. 28, 1991, pp. 244-276.
http://dx.doi.org/10.2307/2404128

[2]   P. J. Webber, “Tundra Primary Productivity,” In: J. D. Ives and R. G. Barry, Eds., Arctic and Alpine Environments, Methuen, London, 1974, pp. 445-474.

[3]   T. G. Gilmanov and W. C. Oechel, “New Estimates of Organic Matter Reserves and Net Primary Productivity of North American Tundra Ecosystems,” Journal of Biogeography, Vol. 22, 1995, pp. 723-741.
http://dx.doi.org/10.2307/2845975

[4]   D. A. Walker, N. A. Auerbach, J. G. Bockheim, F. S. Chapin III, W. Eugster, J. Y. King, J. P. McFadden, G. J. Michaelson, F. E. Nelson, W. C. Oechel, C. L. Ping, W. S. Reeburg, S. Regli, N. I. Shiklomanov and G. L. Vourlitis, “Energy and Trace-Gas Fluxes across a Soil pH Boundary in the Arctic,” Nature, Vol. 394, 1998, pp. 469-472.
http://dx.doi.org/10.1038/28839

[5]   K. L. Young, W. Ming-ko and S. A. Edlund, “Influence of Local Topography, Soils, and Vegetation on Microclimate and Hydrology at a High Arctic Site, Ellesmere Island, Canada,” Arctic and Alpine Research, Vol. 29, No. 3, 1997, pp. 270-284. http://dx.doi.org/10.2307/1552141

[6]   D. A. Walker, H. E. Epstein, V. E. Romanovsky, C. L. Ping, G. J. Michaelson, R. P. Daanen, Y. Shur, R. A. Peterson, W. B. Krantz, M. K. Raynolds, W. A. Gould, G. González, D. J. Nicolsky, C. M. Vonlanthen, A. N. Kade, P. Kuss, A. M. Kelley, C. A. Munger, C. T. Tarnocai, N. V. Matveyeva and F. J. A. Daniels, “Arctic PatternedGround Ecosystems: A Synthesis of Field Studies and Models along a North American Arctic Transect,” Journal of Geophysical Research, Vol. 113, No. G3, 2008, Article ID: G03S01.
http://dx.doi.org/10.1029/2007JG000504

[7]   C. Tarnocai and S. C. Zoltai, “Earth Hummocks of the Canadian Arctic and Subarctic,” Arctic and Alpine Research, Vol. 10, 1978, pp. 581-594.
http://dx.doi.org/10.2307/1550681

[8]   M. A. Kessler and B. T. Werner, “Self-Organization of Sorted Patterned Ground,” Science, Vol. 299, No. 5605, 2003, pp. 380-383.
http://dx.doi.org/10.1126/science.1077309

[9]   W. M. Post, W. R. Emanuel, P. J. Zinke and A. G. Stangenberger, “Soil Carbon Pools and World Life Zones,” Nature, Vol. 298, 1982, pp. 156-159.
http://dx.doi.org/10.1038/298156a0

[10]   H. Cattle and J. Crossley, “Modeling Arctic Climate Change,” Philosophical Transactions of the Royal Society of London A, Vol. 352, No. 1699, 1995, pp. 201-213.
http://dx.doi.org/10.1098/rsta.1995.0064

[11]   Y. Bekku, T. Nakatsubo, A. Kume, M. Adachi and H. Koizumi, “Effects of Warming on the Temperature Dependence of Soil Respiration Rate in Arctic, Temperate and Tropical Soils,” Applied Soil Ecology, Vol. 22, No. 3, 2003, pp. 205-210.
http://dx.doi.org/10.1016/S0929-1393(02)00158-0

[12]   C. H. Robinson, P. A. Wookey, J. A. Lee, T. V. Callaghan and M. C. Press, “Plant Community Responses to Simulated Environmental Change at a High Arctic Polar Semi-Desert,” Ecology, Vol. 79, No. 3, 1998, pp. 856-866.
http://dx.doi.org/10.1890/0012-9658(1998)079[0856:PCRTSE]2.0.CO;2

[13]   W. D. Billings, “Arctic and Alpine Vegetation: Similarities, Differences, and Susceptibility to Disturbance,” BioScience, Vol. 23, 1973, pp. 697-704.
http://dx.doi.org/10.2307/1296827

[14]   L. C. Bliss, “Arctic Tundra and Polar Desert Biome,” In: M. G. Barbour and W. D. Billings, Eds., North American Terrestrial Vegetation, 2nd Edition, Cambridge University Press, Cambridge, 2000, pp. 1-40.

[15]   S. F. Oberbauer, C. E. Tweedie, J. M. Welker, J. T. Fahnestock, G. H. R. Henry, P. J. Webber, R. D. Hollister, M. D. Walker, A. Kuchy, E. Elmore and G. Starr, “Tundra CO2 Fluxes in Response to Experimental Warming across Latitudinal and Moisture Gradients,” Ecological Monographs, Vol. 77, No. 2, 2007, pp. 221-228.
http://dx.doi.org/10.1890/06-0649

[16]   A. J. Holding, V. G. Collins, D. D. French, B. T. D’Sylva and J. H. Baker, “Relationship between Viable Bacterial Counts and Site Characteristic in Tundra,” In: A. J. Holding, O. W. Heal, S. F. MacLean Jr. and P. W. Flanagan, Eds., Soil Organisms and Decomposition in Tundra, Proceedings of the Microbiology, Decomposition, and Invertebrate Working Groups Meeting, Stockholm, 1974, pp. 49-64.

[17]   O. K. Miller and G. A. Laursen, “Belowground Fungal Biomass on U.S. Tundra Biome site at Barrow, Alaska,” In: A. J. Holding, O. W. Heal, S. F. MacLean Jr. and P. W. Flanagan, Eds., Soil Organisms and Decomposition in Tundra, Proceedings of the Microbiology, Decomposition, and Invertebrate Working Groups Meeting, Stockholm, 1974, pp. 151-158.

[18]   W. Cheng and R. A. Virginia, “Measurement of Microbial Biomass in Arctic Tundra Soils Using Fumigation-Extraction and Substrate-Induced Respiration Procedures,” Soil Biology and Biochemistry, Vol. 25, No. 1, 1993, pp. 135-141. http://dx.doi.org/10.1016/0038-0717(93)90251-6

[19]   D. A. Walker, M. K. Raynolds, F. J. Daniels, E. Einarsson, A. Elvebakk, W. A. Gould, A. E. Katenin, S. S. Kholod, C. J. Markon, E. S. Melnikov, N. G. Moskalenko, S. S. Talbot and B. A. Yurtsev, “The Circumpolar Arctic Vegetation Map,” Journal of Vegetation, 2005.

[20]   W. A. Gould, S. Edlund, S. Zoltai, M. D. Raynolds, D. A. Walker and H. Maier, “Canadian Arctic Vegetation Mapping,” International Journal of Remote Sensing, Vol. 23, No. 21, 2002, pp. 4597-4609.
http://dx.doi.org/10.1080/01431160110113962

[21]   W. A. Gould, M. Raynolds and D. A. Walker, “Vegetation, Plant Biomass, and Net Primary Productivity Patterns in the Canadian Arctic,” Journal of Geophysical Research, Vol. 108, No. D2, 2003, p. 8167.
http://dx.doi.org/10.1029/2001JD000948

[22]   Y. I. Chernov and N. V. Matveyeva, “Arctic Ecosystems in Russia,” In: F. E. Wielgolaski, Ed., Ecosystems of the World 3: Polar and Alpine Tundra, Elsevier, Amsterdam, 1997, pp. 361-507.

[23]   L. C. Bliss and N. V. Matveyeva, “Circumpolar Arctic Vegetation,” In: F. S. Chapin III, R. L. Jeffries, J. F. Reynolds, G. R. Shaver and J. Svoboda, Eds., Arctic Ecosystems in a Changing Environment: An Ecophysiological Perspective, Academic Press, Inc., San Diego, 1992, pp. 59-89.
http://dx.doi.org/10.1016/B978-0-12-168250-7.50010-9

[24]   K. R. Everett, “Soil Development in the Mould Bay and Isachsen Areas, Queen Elizabeth Islands, N.W.T., Canada,” Institute of Polar Studies, Ohio State University, 1968, 75 p.

[25]   D. A. Walker, M. K. Raynolds, F. J. Daniels, E. Einarsson, A. Elvebakk, W. A. Gould, A. E. Katenin, S. S. Kholod, C. J. Markon, E. S. Melnikov, N. G. Moskalenko, S. S. Talbot and B. A. Yurtsev, “The Circumpolar Arctic Vegetation Map,” Journal of Vegetation Science, Vol. 16, 2005, pp. 267-282.

[26]   V. B. Sochava, “Botanical-Geographical Subzones in the Western Tundras of Yakutia,” Botanchisky Zhurnal, Vol. 19, 1934.

[27]   V. Y. Razzhivin, “Zonation of Vegetation in the Russian Arctic,” In: I. Nordal and V. Y. Razzhivin, Eds., The Species Concept in the High North—A Panarctic Flora Initiative, The Norwegian Academy of Science and Letters, Oslo, 1999, pp. 113-130.

[28]   M. K. Raynolds, D. A. Walker, C. A. Munger, C. M. Vonlanthen and A. N. Kade, “A Map Analysis of Patterned-Ground along a North American Arctic Transect,” Journal of Geophysical Research, Vol. 113, No. G3, 2008, Article ID: G03S03.
http://dx.doi.org/10.1029/2007JG000512

[29]   D. A. Lipson, S. K. Schmidt and R. K. Monson, “Links between Microbial Population Dynamics and Nitrogen Availability in an Alpine Ecosystem,” Ecology, Vol. 80, No. 5, 1999, pp. 1623-1631.
http://dx.doi.org/10.1890/0012-9658(1999)080[1623:LBMPDA]2.0.CO;2

[30]   Q. Lin and P. C. Brookes, “An Evaluation of the Substrate-Induced Respiration Method,” Soil Biology and Biochemistry, Vol. 31, 1999, pp. 1969-1983.
http://dx.doi.org/10.1016/S0038-0717(99)00120-0

[31]   M. Zalamea and G. González, “Substrate-Induced Respiration in Puerto Rican Soils: Minimum Glucose Amendment,” Acta Científica, Vol. 21, No. 1-3, 2007, pp. 11-17.

[32]   J. P. E. Anderson and K. H. Domsch, “A Physiological Method for the Quantitative Measurement of Microbial Biomass in Soils,” Soil Biology and Biochemistry, Vol. 10, No. 3, 1978, pp. 215-221.
http://dx.doi.org/10.1016/0038-0717(78)90099-8

[33]   D. K. Button, F. Schut, P. Quang, R. Martin and B. Robertson, “Viability and Isolation of Marine Bacteria by Dilution Culture: Theory, Procedures, and Initial Results,” Applied and Environmental Microbiology, Vol. 59, No. 3, 1993, pp. 881-891.

[34]   S. A. Edlund and B. T. Alt, “Regional Congruence of Vegetation and Summer Climate Patterns in the Queen Elizabeth Islands, Northwest Territories, Canada,” Arctic, Vol. 42, No. 1, 1989, pp. 3-23.

[35]   A. E. Giblin, K. J. Nadelhoffer, G. R. Shaver, J. A. Laundre and A. J. McKerrow, “Biogeochemical Diversity along a Riverside Toposequence in Arctic Alaska,” Ecological Monographs, Vol. 61, No. 4, 1991, pp. 415-435.
http://dx.doi.org/10.2307/2937049

[36]   K. J. Nadelhoffer, A. E. Giblin, G. R. Shaver and J. A. Laundre, “Effects of Temperature and Substrate Quality on Element Mineralization in Six Arctic Soils,” Ecology, Vol. 72, No. 1, 1991, pp. 242-253.
http://dx.doi.org/10.2307/1938918

[37]   D. R. Zak and G. W. Kling, “Microbial Community Composition and Function across an Arctic Tundra Landscape,” Ecology, Vol. 87, No. 7, 2006, pp. 1659-1670.
http://dx.doi.org/10.1890/0012-9658(2006)87[1659:MCCAFA]2.0.CO;2

[38]   D. Elliot and J. Svoboda, “Microecosystem around a Large Erratic Boulder: A High-Arctic Study,” In: J. Svoboda and B. Freedman, Eds., Ecology of a Polar Oasis: Alexandra Fiord, Ellesmere Island, Canada, Captus, Toronto, 1994, pp. 207-213.

[39]   G. Mueller, G. Broll and C. Tarnocai, “Biological Activity as Influenced by Microtopography in a Cryosolic Soil, Baffin Island, Canada,” Permafrost and Periglacial Processes, Vol. 10, No. 3, 1999, pp. 279-288.
http://dx.doi.org/10.1002/(SICI)1099-1530(199907/09)10:3<279::AID-PPP325>3.0.CO;2-A

[40]   F. L. Bunnell, “Barrow, Alaska, USA,” In: P. Glowacki, and J. Bednarek, Eds., Structure and Function of Tundra Ecosystems, Ecological Bulletins No. 20, Swedish Natural Science Research Council, Stockholm, 1975, pp. 73124.

[41]   N. Schmidt and M. Bolter, “Fungal and Bacterial Biomass in Tundra Soils Along an Arctic Transect from Taimyr Peninsula, Central Siberia,” Polar Biology, Vol. 25, No. 12, 2002, pp. 871-877.

[42]   O. W. Heal, P. W. Flanagan, D. D. French and S. F. MacLean Jr., “Decomposition and Accumulation of Organic Matter,” In: L. C. Bliss, O. W. Heal and J. J. Moore, Eds., Tundra Ecosystems: A Comparative Analysis, Cambridge University Press, Cambridge, 1981, pp. 587-633.

[43]   A. J. Holding, “The Microflora of Tundra,” In: L. C. Bliss, O. W. Heal and J. J. Moore, Eds., Tundra Ecosystems: A Comparative Analysis, Cambridge University Press, Cambridge, 1981, pp. 561-585.

 
 
Top