JMP  Vol.5 No.1 , January 2014
Diamond as a Solid State Quantum Computer with a Linear Chain of Nuclear Spins System

By removing a 12C atom from the tetrahedral configuration of the diamond, replacing it by a 13C atom, and repeating this in a linear direction, it is possible to have a linear chain of nuclear spins one half and to build a solid state quantum computer. One qubit rotation, controlled-not (CNOT) and controlled-controlled-not (CCNOT) quantum gates are obtained immediately from this configuration. CNOT and CCNOT quantum gates are used to determined the design parameters of this quantum computer.

Cite this paper
G. López and G. López, "Diamond as a Solid State Quantum Computer with a Linear Chain of Nuclear Spins System," Journal of Modern Physics, Vol. 5 No. 1, 2014, pp. 55-60. doi: 10.4236/jmp.2014.51009.
[1]   H.-P. Breuer and F. Petruccione, “The Theory of Open Quantum Systems,” Oxford University Press, Oxford, 2006.

[2]   A. O. Caldeira and A. T. Legget, Physica A: Statistical Mechanics and its Applications, Vol. 121, 1983, pp. 587-616.

[3]   W. G. Unruh and W. H. Zurek, Physical Review D, 1989, Vol. 40, pp. 1071-1094

[4]   B. L. Hu, J. P. Paz and Y. Zhang, Physical Review D, Vol. 45, 1992, pp. 2843-2861.

[5]   A. Venugopalan, Physical Review A, Vol. 56, 1997, pp. 4307-4310.

[6]   H. D. Zeh, Foundations of Physics, Vol. 3, 1973, pp. 109-116.

[7]   J. P. Paz and W. H. Zurek, Proc. Les Houches, Vol. 111A, 1997, p. 409.

[8]   G. Lindblad, Communications in Mathematical Physics, Vol. 48, 1976, pp. 119-130.

[9]   W. S. Warren, Science, Vol. 277, 1997, pp. 1688-1690.

[10]   L. M. L. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood and I. L. Chuang, Nature, Vol. 414, 2001, p. 883.

[11]   M. H. Holzschelter, Los Alamos Science, Vol. 27, 2002, p. 264.

[12]   C. Monroe and J. Kim, Science, 2013, Vol. 339, p. 1164.

[13]   H. Walter, B. T. H. Varcoe, B. G. Englert and T. Becker, Reports on Progress in Physics, Vol. 69, 2006, p. 1325.

[14]   D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Coté and M. D. Lukin, Physical Review Letters, Vol. 85, 2000, pp. 2208-2211.

[15]   K. C. Younge, B. Knuffman, S. E. Anderson and G. Raithel, Physical Review Letters, Vol. 104, 2010, Article ID: 173001.

[16]   I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans and J. E. Mooij, Science, Vol. 299, 2003, pp. 1869-1871.

[17]   A. Yu. Kitaev, Annals of Physics, Vol. 303, 2003, pp. 2-30.

[18]   L. Childress and R. Hanson, MRS Bulletin, Vol. 38, 2013, pp. 134-138.

[19]   G. P. Berman, D. I. Kamenev, D. D. Doolen, G. V. López and V. I. Tsifrinovich, Contemporary Mathematics, Vol. 305, 2002, p. 13.

[20]   G. V. López and L. Lara, Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 39, 2006, p. 3897.

[21]   G. V. López, T. Gorin and L. Lara, Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 41, 2008, Article ID: 055504.

[22]   G. V. López and P. López, Journal of Modern Physics, Vol. 3, 2012, pp. 85-101.

[23]   K. Lakoubovskii and G. J. Adriaenssens, Journal of Physics: Condensed Matter, Vol. 13, 2001, p. 6015.

[24]   R. W. Hamm and M. E. Hamm, “Industrial Acceleretors and Their Applications,” World Scientific, Singapore, 2012.

[25]   M. A. Cazalilla, N. Lorente, R. D. Muno, J. P. Gauyacq, D. Teillet-Billy and P. M. Echenique, Physical Review B, Vol. 58, 1998, pp. 13991-14006.

[26]   J. D. Jackson, “Classical Electrodynamics,” 3rd Edition, Chapter 5.6, John Wiley and Sons, Inc., Hoboken, 1999.

[27]   A. N. Kolmogorov and S. V. Fomin, “Introductory Real Analysis,” Dover Publications, Inc., Mineola, 1970.

[28]   M. A. Nielsen and I. L. Chuang, “Quantum Computation and Quantum Information,” Cambridge University Press, Cambridge, 2000.

[29]   D. Rugar, R. Budakian, H. J. Mamin and B. W. Chui, Nature, Vol. 430, 2004, p. 329.

[30]   M. J. Duer, “Introduction to Solid-State NMR Spectroscopy,” Blackwell, Oxford, 2004.