JMP  Vol.5 No.1 , January 2014
Diamond as a Solid State Quantum Computer with a Linear Chain of Nuclear Spins System
Abstract: By removing a 12C atom from the tetrahedral configuration of the diamond, replacing it by a 13C atom, and repeating this in a linear direction, it is possible to have a linear chain of nuclear spins one half and to build a solid state quantum computer. One qubit rotation, controlled-not (CNOT) and controlled-controlled-not (CCNOT) quantum gates are obtained immediately from this configuration. CNOT and CCNOT quantum gates are used to determined the design parameters of this quantum computer.
Cite this paper: G. López and G. López, "Diamond as a Solid State Quantum Computer with a Linear Chain of Nuclear Spins System," Journal of Modern Physics, Vol. 5 No. 1, 2014, pp. 55-60. doi: 10.4236/jmp.2014.51009.

[1]   H.-P. Breuer and F. Petruccione, “The Theory of Open Quantum Systems,” Oxford University Press, Oxford, 2006.

[2]   A. O. Caldeira and A. T. Legget, Physica A: Statistical Mechanics and its Applications, Vol. 121, 1983, pp. 587-616.

[3]   W. G. Unruh and W. H. Zurek, Physical Review D, 1989, Vol. 40, pp. 1071-1094

[4]   B. L. Hu, J. P. Paz and Y. Zhang, Physical Review D, Vol. 45, 1992, pp. 2843-2861.

[5]   A. Venugopalan, Physical Review A, Vol. 56, 1997, pp. 4307-4310.

[6]   H. D. Zeh, Foundations of Physics, Vol. 3, 1973, pp. 109-116.

[7]   J. P. Paz and W. H. Zurek, Proc. Les Houches, Vol. 111A, 1997, p. 409.

[8]   G. Lindblad, Communications in Mathematical Physics, Vol. 48, 1976, pp. 119-130.

[9]   W. S. Warren, Science, Vol. 277, 1997, pp. 1688-1690.

[10]   L. M. L. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood and I. L. Chuang, Nature, Vol. 414, 2001, p. 883.

[11]   M. H. Holzschelter, Los Alamos Science, Vol. 27, 2002, p. 264.

[12]   C. Monroe and J. Kim, Science, 2013, Vol. 339, p. 1164.

[13]   H. Walter, B. T. H. Varcoe, B. G. Englert and T. Becker, Reports on Progress in Physics, Vol. 69, 2006, p. 1325.

[14]   D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Coté and M. D. Lukin, Physical Review Letters, Vol. 85, 2000, pp. 2208-2211.

[15]   K. C. Younge, B. Knuffman, S. E. Anderson and G. Raithel, Physical Review Letters, Vol. 104, 2010, Article ID: 173001.

[16]   I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans and J. E. Mooij, Science, Vol. 299, 2003, pp. 1869-1871.

[17]   A. Yu. Kitaev, Annals of Physics, Vol. 303, 2003, pp. 2-30.

[18]   L. Childress and R. Hanson, MRS Bulletin, Vol. 38, 2013, pp. 134-138.

[19]   G. P. Berman, D. I. Kamenev, D. D. Doolen, G. V. López and V. I. Tsifrinovich, Contemporary Mathematics, Vol. 305, 2002, p. 13.

[20]   G. V. López and L. Lara, Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 39, 2006, p. 3897.

[21]   G. V. López, T. Gorin and L. Lara, Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 41, 2008, Article ID: 055504.

[22]   G. V. López and P. López, Journal of Modern Physics, Vol. 3, 2012, pp. 85-101.

[23]   K. Lakoubovskii and G. J. Adriaenssens, Journal of Physics: Condensed Matter, Vol. 13, 2001, p. 6015.

[24]   R. W. Hamm and M. E. Hamm, “Industrial Acceleretors and Their Applications,” World Scientific, Singapore, 2012.

[25]   M. A. Cazalilla, N. Lorente, R. D. Muno, J. P. Gauyacq, D. Teillet-Billy and P. M. Echenique, Physical Review B, Vol. 58, 1998, pp. 13991-14006.

[26]   J. D. Jackson, “Classical Electrodynamics,” 3rd Edition, Chapter 5.6, John Wiley and Sons, Inc., Hoboken, 1999.

[27]   A. N. Kolmogorov and S. V. Fomin, “Introductory Real Analysis,” Dover Publications, Inc., Mineola, 1970.

[28]   M. A. Nielsen and I. L. Chuang, “Quantum Computation and Quantum Information,” Cambridge University Press, Cambridge, 2000.

[29]   D. Rugar, R. Budakian, H. J. Mamin and B. W. Chui, Nature, Vol. 430, 2004, p. 329.

[30]   M. J. Duer, “Introduction to Solid-State NMR Spectroscopy,” Blackwell, Oxford, 2004.