Back
 MNSMS  Vol.4 No.1 , January 2014
Modelling of the Quantum Transport in Strained Si/SiGe/Si Superlattices Based P-i-n Infrared Photodetectors for 1.3 - 1.55 μm Optical Communication
Abstract: In this paper, a p-i-n heterojunction based on strain-compensated Si/Si1-xGex/Si multiple quantum wells on relaxed Si1-yGey is proposed for photodetection applications. The Si1-yGey/Si/Si1-xGex/Si/Si1-yGey stack consists in a W-like potential profile strain-compensated in the two low absorption windows of silica fibers infrared (IR) photodetectors. These computations have been used for the study of p-i-n infrared photodetectors operating at room temperature (RT) in the range 1.3 - 1.55 μm. The electron transport in the Si/Si1-xGex/Si multi-quantum wells-based p-i-n structure was analyzed and numerically simulated taking into account tunneling process and thermally activated transfer through the barriers mainly. These processes were modeled with a system of Schrodinger and kinetic equations self-consistently resolved with the Poisson equation. Temperature dependence of zero-bias resistance area product (RoA) and bias-dependent dynamic resistance of the diode have been analyzed in details to investigate the contribution of dark current mechanisms which reduce the electrical performances of the diode.
Cite this paper: N. Sfina, N. Yahyaoui, M. Said and J. Lazzari, "Modelling of the Quantum Transport in Strained Si/SiGe/Si Superlattices Based P-i-n Infrared Photodetectors for 1.3 - 1.55 μm Optical Communication," Modeling and Numerical Simulation of Material Science, Vol. 4 No. 1, 2014, pp. 37-52. doi: 10.4236/mnsms.2014.41007.
References

[1]   B. Movaghar, S. Tsao, S. Abdollahi Pour, T. Yamanaka, and M. Razeghi, “Gain and Recombination Dynamics in Photodetectors Made with Quantum Nanostructures: The Quantum Dot in a Well and the Quantum Well,” Physical Review B, Vol. 78, 2008, Article ID: 115320. http://dx.doi.org/10.1103/PhysRevB.78.115320

[2]   R. Apetz, L. Vescan, A. Hartmann, C. Dieker and H. Lüth, “Photoluminescence and Electroluminescence of SiGe Dots Fabricated by Island Growth,” Applied Physics Let= ters, Vol. 66, No. 4, 1995, p. 445. http://dx.doi.org/10.1063/1.114051

[3]   T. Stoica and L. Vescan, “Quantum Efficiency of SiGe LEDs,” Semiconductor Science and Technology, Vol. 18, No. 6, 2003, pp. 409-416. http://dx.doi.org/10.1088/0268-1242/18/6/303

[4]   B. Levine, “Quantum-Well Infrared Photodetectors,” Journal of Applied Physics, Vol. 74, No. 8, 1993, p. R1. http://dx.doi.org/10.1063/1.354252

[5]   K. K. Choi, “The Physics of Quantum Well Infrared Photodetectors,” World Scientific, Singapore City, 1997.

[6]   H. C. Liu, M. Buchanan, J. Li, Z. R. Wasilewski, P. H. Wilson, P. A. Marshall, R. A. Barber, P. Chow-Chong, J. W. Fraser and J. Stapledon, “Applications of Photonic Technology 2,” In: G. A. Lampropoulos and R. A. Lessard, Eds., Applications of Photonic Technology 2, Plenum, New York, 1997, pp. 311-318.

[7]   Z. Lo, R. Jiang, Y. Zheng, L. Zang, Z. Chen, S. Zhu, X. Cheng and X. Liu, “Staircase Band Gap Si1-xGex/Si Photodetectors,” Applied Physics Letters, Vol. 77, No. 10, 2000, p. 1548. http://dx.doi.org/10.1063/1.1286958

[8]   P. Rauter, T. Fromherz, C. Falub, D. Grützmacher and G. Bauer, “SiGe Quantum Well Infrared Photodetectors on Pseudosubstrate,” Applied Physics Letters, Vol. 94, No. 8, 2009, Article ID: 081115. http://dx.doi.org/10.1063/1.3089817

[9]   I. Bormann, K. Brunner, S. Hackenbuchner, G. Zandler, G. Abstreiter, S. Schmult and W. Wegscheider, “Midinfrared Intersubband Electroluminescence of Si/SiGe Quantum Cascade Structures,” Applied Physics Letters, Vol. 80, No. 13, 2002, p. 2260. http://dx.doi.org/10.1063/1.1465131

[10]   P. Boucaud, M. E. Kurdi and J. M. Hartmann, “Photoluminescence of a Tensilely Strained Silicon Quantum Well on a Relaxed SiGe Buffer Layer,” Applied Physics Letters, Vol. 85, No. 1, 2004, p. 46. http://dx.doi.org/10.1063/1.1766073

[11]   N. Sfina, J. Lazzari, J. Derrien, F. A. d’Avitaya and M. Said, “Strain-Balanced Si1-xGex/Si Type II Quantum Wells for 1.55 μm Detection and Emission,” The European Physical Journal B, Vol. 48, No. 2, 2005, pp. 151-156. http://dx.doi.org/10.1140/epjb/e2005-00389-6

[12]   N. J. Ekins-Daukes, K. Kawaguchi and J. Zhang, “Strain-Balanced Criteria for Multiple Quantum Well Structures and Its Signature in X-Ray Rocking Curves,” Crystal Growth & Design, Vol. 2, No. 4, 2002, pp. 287-292. http://dx.doi.org/10.1021/cg025502y

[13]   C. G. Van de Walle and R. M. Martin, “Theoretical Calculations of Heterojunction Discontinuities in the Si/Ge System,” Physical Review B, Vol. 34, No. 8, 1986, p. 5621. http://dx.doi.org/10.1103/PhysRevB.34.5621

[14]   F. Ben Zid, A. Bouri, H. Mejri, R. Tlili, M. Said, F. A. D’Avitaya and J. Derrien, “Stark Effect Modeling in Strained n-Type Si/Si1-xGex Resonant Tunneling Heterostructures,” Journal of Applied Physics, Vol. 91, No. 11, 2002, p. 9170. http://dx.doi.org/10.1063/1.1473213

[15]   S. M. Sze, “Physics of Semiconductor Devices Academic,” John Wiley and Sons, Hoboken, 1981.

[16]   J. A. Berashevich, A. L. Danilyuk, A. N. Kholod and V. E. Borisenko, “Carrier Transport and Related Phenomena in Nanosize Periodic Silicon/Insulator Structures,” Materials Science and Engineering: B, Vol. 101, No. 1-3, 2003, pp. 111-118. http://dx.doi.org/10.1016/S0921-5107(02)00664-5

[17]   G. Bastard, “Wave Mechanics Applied to Semiconductor Heterostructures,” Les Editions de Physique, Les Ulis, 1988.

[18]   W. Shockley, “Electrons and Holes in Semiconductors,” D. Van Nostrand, Princeton, 1950.

[19]   A. S. Grove, “Physics and Technology of Semiconductor Devices,” Wiley, New York, 1967.

[20]   E. H. Nicollian, “Electrical Properties of the Si-SiO2 Interface and Its Influence on Device Performance and Stability,” Journal of Vacuum Science & Technology, Vol. 14, No. 5, 1977, p. 1112. http://dx.doi.org/10.1116/1.569343

[21]   I.-H. Tan, G. L. Snider, L. D. Chang and E. L. Hu, “A Self-Consistent Solution of Schrödinger-Poisson Equations Using a Nonuniform Mesh,” Journal of Applied Physics, Vol. 68, No. 8, 1990, p. 4071. http://dx.doi.org/10.1063/1.346245

[22]   K. Araki, “Analysis of Barrier Transmission in Resonant Tunneling Diodes,” Journal of Applied Physics, Vol. 62, No. 3, 1987, p. 1059. http://dx.doi.org/10.1063/1.339736

[23]   R. Tsu and L. Esaki, “Tunneling in a Finite Superlattice,” Applied Physics Letters, Vol. 22, No. 11, 1973, p. 562. http://dx.doi.org/10.1063/1.1654509

[24]   N. Sfina, J.-L. Lazzari, F. Ben Zid, A. Bhouri and M. Said, “Wave Function Engineering in W Designed Strained-Compensated Si/Si1-xGex/Si Type II Quantum Wells for 1.55 μm Optical Properties,” Optical Materials, Vol. 27, No. 5, 2005, pp. 859-863. http://dx.doi.org/10.1016/j.optmat.2004.08.073

[25]   M. M. Rieger and P. Vogl, “Electronic-Band Parameters in Strained Si1-xGex Alloys on Si1-yGey Substrate,” Physical Review B, Vol. 48, No. 19, 1993, pp. 14276-14287. http://dx.doi.org/10.1103/PhysRevB.48.14276

[26]   R. People and S. K. Sputz, “Band Nonparabolicities in Lattice-Mismatch-Strained Bulk Semiconductor Layers,” Physical Review B, Vol. 41, No. 12, 1990, pp. 8431-8439. http://dx.doi.org/10.1103/PhysRevB.41.8431

[27]   B. V. Kamenev, L. Tsybeskov, J.-M. Baribeau and D. J. Lockwood, “Coexistence of Fast and Slow Luminescence in Three-Dimensional Si/Si1-xGex Nanostructures,” Physical Review B, Vol. 72, No. 19, 2005, Article ID: 193306. http://dx.doi.org/10.1103/PhysRevB.72.193306

[28]   J. Millman and A. Grabel, “Dispositifs à Semiconducteurs,” Jacob Millman, Livres, 1989.

[29]   J. Phillips, K. Kamath and P. Bhattacharya, “Far-Infrared Photoconductivity in Self-Organized InAs Quantum Dots,” Applied Physics Letters, Vol. 72, No. 16, 1998, p. 2020. http://dx.doi.org/10.1063/1.121252

[30]   V. Ryzhii, “The Theory of Quantum-Dot Infrared Phototransistors,” Semiconductor Science and Technology, Vol. 11, No. 5, 1996, p. 759. http://dx.doi.org/10.1088/0268-1242/11/5/018

[31]   F. Y. Huang, X. Zhu, M. O. Tanner and K. L. Wang, “Normal-Incidence Strained-Layer Superlattice Ge0.5Si0.5/Si photodiodes near 1.3 μm,” Applied Physics Letters, Vol. 67, 1995, p. 566. http://dx.doi.org/10.1063/1.115171

[32]   I. M. Baker and C. D. Maxey, “Summary of HgCdTe 2D Array Technology in the UK,” Journal of Electronic Materials, Vol. 30, No. 2, 2001, pp. 682-689. http://dx.doi.org/10.1007/BF02665856

[33]   Y. Wei, A. Hood, H. Yau, A. Gin, M. Razeghi, M. Z. Tidrow and V. Nathan, “Uncooled Operation of Type-II InAs/GaSb Superlattice Photodiodes in the Midwave-length Infrared Range,” Applied Physics Letters, Vol. 86, No. 23, 2005, Article ID: 233106. http://dx.doi.org/10.1063/1.1947908

[34]   D. Ali, P. Thompson, J. DiPasquale and C. J. K. Richardson, “A Silicon-Germanium W-Structure Photodiode for Near-Infrared Detection,” Journal of Vacuum Science & Technology B, Vol. 27, No. 1, 2009, p. 23. http://dx.doi.org/10.1116/1.3039688

[35]   A. I. Yakimov, A. V. Dvurechenskiï, A. I. Nikiforov, S. V. Chaïkovskiï and S. A. Tiïs, “Ge/Si Photodiodes with Embedded Arrays of Ge Quantum Dots for the near Infrared (1.3 - 1.5 μm) Region,” Semiconductors, Vol. 37, No. 11, 2003, pp. 1345-1349. http://dx.doi.org/10.1134/1.1626222

[36]   H. Presting, T. Zinke, A. Splett, H. Kibbel and M. Jaros, “Room-Temperature Electroluminescence from Si/Ge/Si1-x Gex Quantum—Well Diodes Grown by Molecular— Beam Epitaxy,” Applied Physics Letters, Vol. 69, 1996, p. 2376. http://dx.doi.org/10.1063/1.117642

[37]   H. Presting, T. Zinke, A. Splett, H. Kibbel and M. Jaros, “Room-Temperature Electroluminescence from Si/Ge/Si1-x Gex Quantum-Well Diodes Grown by Molecular-Beam Epitaxy,” Applied Physics Letters, Vol. 69, No. 16, 1996, p. 2376. http://dx.doi.org/10.1063/1.117642

[38]   M. Wolf, R. Brendel, J. H. Werner and H. J. Queisser, “Solar Cell Efficiency and Carrier Multiplication in Si1-xGex Alloys,” Journal of Applied Physics, Vol. 83, No. 8, 1998, p. 4213. http://dx.doi.org/10.1063/1.367177

[39]   J. A. Berashevich, V. E. Borisenko, J.-L. Lazzari and F. A. D’Avitaya, “Resonant Tunneling versus Thermally Activated Transport through Strained Si1-xGex/Si/Si1-xGex Quantum Wells,” Physical Review B, Vol. 75, No. 11, 2007, Article ID: 115336. http://dx.doi.org/10.1103/PhysRevB.75.115336

 
 
Top