CWEEE  Vol.3 No.1 , January 2014
Synthesis and Characterization of TiO2 Porous Films for Heterogeneous Photocatalysis

Heterogeneous photocatalysis is one of the advanced oxidation processes (AOP’s). These are very used nowadays for their implementation in tertiary water treatment with solar activation, with very good results. In this study, TiO2 porous films were synthesized by sol-gel method. Polyethylene glycol (PEG) 4000 was used as a templating reagent, which is oxidized at a lower temperature than TiO2. This allows the formation of a “skeleton” of porous TiO2 with increased surface area, resulting in higher photocatalytic activity. The film characterization was made with help of FE-SEM microscope, XRD diffractometer and scotch tape test. Finally, the oxidation experiments were performed using methylene blue as a model pollutant and they revealed an increase in the photocatalytic activity of porous films in comparison with the non-porous films.

Cite this paper: Mejia, J. , Angeles, L. and Almanza, R. (2014) Synthesis and Characterization of TiO2 Porous Films for Heterogeneous Photocatalysis. Computational Water, Energy, and Environmental Engineering, 3, 36-40. doi: 10.4236/cweee.2014.31005.

[1]   O. M. Alfano, D. Bahnemann, A. E. Cassano, R. Dillert and R. Goslich, “Photocatalysis in Water Environments Using Artificial and Solar Light,” Catalysis Today, Vol. 58, No. 2-3, 2000, pp. 199-230.

[2]   S. E. Manaham, “Environmental Chemistry,” 9th Edition, CRC Press, USA, 2010.

[3]   J. M. Herrmann, “Heterogeneous Photocatalysis: An Emerging Discipline Involving Multiphase Systems,” Catalysis Today, Vol. 24, No. 1-2, 1995, pp. 157-164.

[4]   C. Estrada, J. Blanco and S. Malato, “Purificacion de aguas por Fotocatalisis Heterogenea: Estado del arte,” CIEM 2011 AT, Spain.

[5]   K. Ertl, “Handbook of Heterogeneous Catalysis,” Vol. 1, VHC, USA, 1997.

[6]   J. Yao, Y. Bai, N. Chen, M. Takahashi and T. Yoko, “Sol-Gel Preparation, Characterization, and Photocatalytic Activity of Macroporous TiO2 Thin Films,” Journal of the American Ceramic Society, Vol. 94, No. 4, 2011, pp. 1191-1197.

[7]   W. Huang, M. Lei, H. Huang, J. Chen and H. Chen, “Effect of Polyethylene Glycol on Hydrophilic TiO2 Films: Porosity-Driven Superhydrophilicity,” Surface & Coatings Technology, Vol. 204, No. 24, 2010, pp. 3954-3961.

[8]   J. C. Morales-Mejia, “Uso de Colectores Solares para la Remoción Fotocatalítica de Disruptores Endócrinos Presentes en agua Contaminada,” PhD Thesis, Programa de Maestria y Doctorado en Ingenieria, UNAM, Mexico, 2013.

[9]   ASTM, “Standard Test Methods Measuring Adhesion by Tape Test,” ASTM International, 2012.

[10]   A. Mendoza, “Caracterización Microestructural y Morfologia de TiO2 para Aplicaciones Termoluminiscentes,” Revista Mexicana de Fisica, Suplemento I, 2003.

[11]   B. Guo, Z. Liu, L. Hong, H. Jiang and J. Yang Lee, “Photocatalytic Effect of the Sol-Gel Derived Nanoporous TiO2 Transparent Thin Films,” Thin Solid Films, Vol. 479, No. 1-2, 2005, pp. 310-315.

[12]   C. Liu, R. Li and W. Zhang, “Adsorption Property and Photocatalytic Activity of Sol-Gel Prepared Porous TiO2 Using PEG1000 as Template,” Applied Mechanics and Materials, Vol. 48-49, 2011, pp. 153-156.

[13]   S. Bu, X. Liu, Z. Jin, L. Yang and Z. Cheng, “Fabrication of TiO2 Porous Thin Films Using PEG Templates and Chemistry of the Process,” Materials Chemistry and Physics, Vol. 88, No. 2-3, 2004, pp. 273-279.