Back
 FNS  Vol.5 No.2 , January 2014
Water Adsorption Isotherms of Amaranth (Amaranthus caudatus) Flour
Abstract: Water sorption isotherms are unique for individual food materials and can be used directly to predict shelf life and determine proper storage conditions. In this context, the aim of this study was to determine the moisture adsorption isotherms of amaranth flour at 15℃, 25℃ and 35℃ in a range of water activity from 0.1 to 0.9. Experimental data were modeled using five equations commonly applied in the foods field. The goodness of the fit for each isotherm model was evaluated through the coefficient of determination, the variance due to error and the confidence interval of the estimated parameters. All models can predict the adsorption isotherms of amaranth flour, but the GAB equation gives a better understanding of the observed sorption behavior. Estimated adsorption monolayer water contents ranged from 6.4 g to 7.2 g of water per 100 g of dry material. It was observed by a weak dependence of water activity with temperature. For ensuring microbiological stability, water content in amaranth flour should not be higher than 13 g of water per 100 g of dry material.
Cite this paper: J. Balderrama and S. Cadima, "Water Adsorption Isotherms of Amaranth (Amaranthus caudatus) Flour," Food and Nutrition Sciences, Vol. 5 No. 2, 2014, pp. 153-157. doi: 10.4236/fns.2014.52020.
References

[1]   J. D. Sauer. “Historical Geography of Crop Plants: A Select Roster,” CRC Press, México, 1993. pp. 121-128.

[2]   M. Pinto, E. Mamani, L. Quispe and W. Rojas, “Caracterización y Análisis de la Variabilidad Fenotípica de la Colección de Germoplasma de Amaranto,” Informe Anual 2004/2005, Fundación Proimpa, Bolivia, 2005, pp. 78-88.

[3]   R. Becerra, “El Amaranto: Nuevas Tecnologías para un Antiguo Cultivo,” Boletín Bimestral de la Comisión Nacional Para el Conocimiento y Uso de la Biodiversidad. Conabio, Vol. 30, No. 1, 2000, pp. 1-6.

[4]   A. M. Pagano and R. H. Mascheroni, “Sorption Isotherms for Amaranth Grains,” Journal of Foodengineering, Vol. 67, No. 1, 2005, pp. 441-450.
http://dx.doi.org/10.1016/j.jfoodeng.2004.05.012

[5]   R. Teutonico and D. Knorr, “Amaranth: Composition, Properties, and Applications of a Rediscovered Food Crop,” Foodtechnology, Vol. 39, No. 4, 1985, pp. 49-60.

[6]   R. S. Singhal and P. R. Kulkarni, “Review: Amaranths an Under-Utilized Resource,” International Journal Food Science and Technology, Vol. 23, 1988, pp. 125-139.
http://dx.doi.org/10.1111/j.1365-2621.1988.tb00559.x

[7]   P. Rocha, “Identificar Prácticas de Procesamiento y Obtención de Derivados de Amaranto (Millmi) a Nivel Familiar,” Informe Técnico Anual 2002-2003, Ipgri-Ifad, Fundación Proinpa, Bolivia, 2003, pp. 121-123.

[8]   E. A. Tosi, M. C. Ciappini and R. Masciarelli, “Utilización de la Harina Integral de Amaranto (Amaranthuscruentus) en la Fabricación de Galletas para Celíacos,” Alimentaria, Vol. 33, 1996, pp. 49-55.

[9]   P. Fellow, “Food Processing Technology. Principles and Practice,” 2nd Edition, Ellis Horwood, Chichester, 2003.

[10]   J. Comaposada, P. Gou and J. Arnau, “The Effect of Sodium Chloride Content and Temperature on Pork Meat Isotherms,” Meat Science, Vol. 55, No. 3, 2000, pp. 291295.
http://dx.doi.org/10.1016/S0309-1740(99)00154-0

[11]   X. W. Zhang, X. Liu, D.-X. Gu, W. Zhou, R. L. Wang and P. Liu, “Desorption Isotherms of Some Vegetables,” Journal Science of Food Agriculture, Vol. 70, No. 3, 1996, pp. 303-306.
http://dx.doi.org/10.1002/(SICI)1097-0010(199603)70:3<303::AID-JSFA494>3.0.CO;2-A

[12]   W. Wolf, W. E. L. Spiesses and G. Jung, “Properties of Water in Foods in Relation to Quality and Stability,” D. Simatos and J. L. Multon, Eds., Martinusnijhoff Publishers, Dordrecht, 1985, pp. 661-679.

[13]   H. Bizot, R. Jowitt, F. Escher, B. Hallstrom, H. Meffer, W. L. Spiess and G. Vos, “Using the Gab Model to Construct Sorption Isotherms,” Physical Properties of Foods, Applied Science Publishers, London, 1983, pp. 43-54.

[14]   H. Weisser, “Influence of Temperature on Sorption Equilibrium,” In: D. Simatos and J. L. Multon, Eds., Properties of Water in Foods in Relation to Food Quality and Stability, Martinus Nijhoff Publishers, Dordrecht, 1985, pp. 95-118.

[15]   Z. B. Maroulis, E. Tsami, D. Marinos-Kouris and G. D. Saravacos, “Application of the GAB Model to the Moisture Sorption Isotherms for Dried Fruits,” Journal of Food Engineering, Vol. 7, No. 1, 1988, pp. 63-70.
http://dx.doi.org/10.1016/0260-8774(88)90069-6

[16]   H. A. Iglesias and J. Chirife, “An Alternative to the GAB Model for the Mathematical Description of Moisture Sorption Isotherms of Foods,” Foods Research International, Vol. 28, No. 1, 1995, pp. 317-321.
http://dx.doi.org/10.1016/0963-9969(94)00002-P

[17]   C. T. Kiranoudis, Z. B. Maroullis, E. Tsami and D. Marinos-Kouris, “Equilibrium Moisture Content and Heat of Desorption of Some Vegetables,” Journal of Food Engineering, Vol. 20, No. 1, 1993, pp. 55-74.
http://dx.doi.org/10.1016/0260-8774(93)90019-G

[18]   J. Chirife and H. A. Iglesias, “Equations for Fitting Water Sorption Isotherm of Foods: Part I: A Review,” Journal of Food Technology, Vol. 13, No. 1, 1978, pp. 159-174.

[19]   J. Alvarado, E. Toaza and G. Coloma, “Isotermas de Desorción en Harinas de Amaranto,” Archivos Latinoamericanos de Nutrición, Vol. 5, No. 1, 1990, pp. 387394 (Unpublished).

[20]   A. Lema, D. Palumbo, J. Adaro and M. Lara, “Equilibrio de Sorción de Amaranto,” En Memorias del viii Congreso Latinoamericano de Transferencia de Calor y Materia LAT-CYM, Veracruz, 2001, pp. 184-189.

[21]   M. L. Pollio, M. Tolaba and C. Suárez, “Measuring and Modeling Grain Sorption Equilibria of Amaranth Grains,” Cereal Chemistry, Vol. 75, No. 3, 1998, pp. 297-300.
http://dx.doi.org/10.1094/CCHEM.1998.75.3.297

[22]   E. A. Tosi, R. Masciarelli and M. Ciappini, “Humedades de Equilibrio del Amaranto (amarantuscruentus),” La alimentación Latinoamericana, Vol. 203, 1994, pp. 7376.

[23]   A. Calzeta, R. J. Aguerre and C. Suárez, “Analysis of the Sorptional Characteristics of Amaranth Starch,” Journal of Food Engineering, Vol. 42, No. 1, 1999, pp. 51-57.
http://dx.doi.org/10.1016/S0260-8774(99)00103-X

[24]   J. A. Valdez-Niebla, O. Paredes-López, J. M. VargasLópez and D. Hernández-López, “Moisture Sorption Isotherms and Other Physicochemical Properties of Nixtamalized Amaranth Flour,” Food Chemistry, Vol. 46, No. 1, 1992, pp. 19-23.
http://dx.doi.org/10.1016/0308-8146(93)90069-R

[25]   T. C. Lima de Souza, A. H. Lima de Souza and R. A. da Silva-Pena, “A Rapid Method to Obtaining Moisture Sorption Isotherms of a Starchy Product,” Starch/Starke, Vol. 65, No. 5-6, 2013, pp. 433-436.

[26]   K. Levenberg, “A Method for the Solution of Certain Nonlinear Problems in Least Squares,” Quarterly of Applied Mathematics, Vol. 2, No. 1, 1994, pp. 164-168.

[27]   D. W. Marquardt, “An Algorithm for Least-Squares Estimation of Nonlinear Parameters,” Journal of the Society for Industrial and Applied Mathematics, Vol. 11, No. 1, 1963, pp. 431-441.
http://dx.doi.org/10.1137/0111030

[28]   A. Gálvez, E. Aravena and R. Mondaca, “Isotermas de Adsorción en Harina de Maíz (Zeamays L.),” Ciência e Tecnologia de Alimentos, Campinhas, Vol. 26, No. 4, 2006, pp. 821-827.
http://dx.doi.org/10.1590/S0101-20612006000400017

[29]   H. A. Iglesias and J. Chirife, “Water Sorption Parameters of Food and Food Components,” In: Handbook of Food Isotherms, Academic Press, New York, 1982, pp. 23-87.

[30]   L. B. Rockland and S. K. Nishi, “Influence of Water Activity on Food Product Quality and Stability,” Food Technology, Vol. 34, No. 1, 1980, pp. 42-59.

 
 
Top