JMP  Vol.5 No.1 , January 2014
A Travelling Wave Group III—Consistent with QED
Affiliation(s)
UHRL, San Jose, USA.
ABSTRACT

The travelling wave group is a stable wave packet. Many surprising results are derived from it. The group is easily quantized for photons and applied, as a solution to the relativistic Klein-Gordon equation, to free particles. Further solutions to the resulting algebraic equation provide a stable wave function for free antiparticles. Consistency with the superstructure of quantum electrodynamics is obtained by an assignment to the electron antiparticle of negative mass and negative charge. Then in 5-dimensional space-time-mass, CPT invariance transforms to M’PT conservation in either charged or neutral particles, while many other consequences are also evident.


Cite this paper
A. Bourdillon, "A Travelling Wave Group III—Consistent with QED," Journal of Modern Physics, Vol. 5 No. 1, 2014, pp. 23-28. doi: 10.4236/jmp.2014.51004.
References
[1]   A. J. Bourdillon, Journal of Modern Physics, Vol. 3, 2012, pp. 290-296. http://dx.doi.org/10.4236/jmp.2012.33041

[2]   A. J. Bourdillon, Journal of Modern Physics, Vol. 4, 2013, pp. 705-711. http://dx.doi.org/10.4236/jmp.2013.46097

[3]   P. A. M. Dirac, “The Principles of Quantum Mechanics,” 4th Edition, Oxford University Press, Oxford, 1958, Section 30, p. 262.

[4]   K. Nakamura, et al. (Particle Data Group), JPG 2010, 37, 975021. (Search “Tests of Conservation Laws” for updates that include L. Wolfenstein, T. G. Trippe and C.-J. Lin, 2010) http://pdg.lbl.gov

[5]   M. Pavsic and E. Recami, Lettere al Nuovo Cimento, Vol. 34, 1982, pp. 357-362.
http://dx.doi.org/10.1007/BF02817167

[6]   E. Recami, La Rivista Del Nuovo Cimento Series 3, Vol. 9, 1986, pp. 1-178. (See Especially Part I Section 2)

[7]   E. C. G. Stueckelberg, Helvetica Physica Acta, Vol. 14, 1941, pp. 588-594.

[8]   R. P. Feynman, Physical Review, Vol. 76, 1949, pp. 749-769. http://dx.doi.org/10.1103/PhysRev.76.749

[9]   A. Einstein, B. Podolski and N. Rosen, Physical Review, Vol. 47, 1935, pp. 777-780.
http://dx.doi.org/10.1103/PhysRev.47.777

[10]   N. Bohr, “The Philosophical Writings of Niels Bohr. Vols I, II, and III,” Ox Bow Press, Woodbridge, 1987.

[11]   J. M. Ziman, “Elements of Advanced Quantum Theory,” Cambridge University Press, Cambridge, 1969.

[12]   G. Salesi and E. Recami, Foundations of Physics Letters, Vol. 10, 1997, pp. 553-546.
http://dx.doi.org/10.1023/A:1022493101954

[13]   G. Salesi and E. Recami, Foundations of Physics, Vol. 28, 2010, pp. 763-773.
http://dx.doi.org/10.1023/A:1018849804045

[14]   E. Recami and G. Ziino, Il Nuovo Cimento A Series 11, Vol. 33, 1976, pp. 205-215.
http://dx.doi.org/10.1007/BF02734400

[15]   J. Longdell, Nature, Vol. 469, 2011, pp. 475-476.
http://dx.doi.org/10.1038/469475a

[16]   E. Saglamurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler and W. Tittle, Nature, Vol. 469, 2011, pp. 512-515.
http://dx.doi.org/10.1038/nature09719

[17]   C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten and N. Gisin, Nature, Vol. 469, 2011, pp. 508-511.
http://dx.doi.org/10.1038/nature09662

[18]   J. S. Bell, Reviews of Modern Physics, Vol. 38, 1966, pp. 447-452. http://dx.doi.org/10.1103/RevModPhys.38.447

[19]   D. Bohm and J. Bub, Reviews of Modern Physics, Vol. 38, 1966, pp. 453-475.
http://dx.doi.org/10.1103/RevModPhys.38.453

 
 
Top