Back
 OJCM  Vol.4 No.1 , January 2014
To Improve Mixed-Mode Interlaminar Fracture Toughness of Composite Sub-Structures
Abstract: The present paper investigates the influence of stitching on delamination resistance of laminated composite structures. The mixed-mode interlaminar fracture toughness, GI/IIC, of the stitched hybrid laminated composites is studied in order to investigate the resistance of the 3D-composites to the crack propagation in delaminated composite structures. To that end, the mixed-mode interlaminar fracture toughness was measured using the asymmetric double cantilever beam (ADCB) test method. The hybrid ADCB and stitched hybrid ADCB composite beams were laid-up in order to study the effect of stitching on the interlaminar fracture toughness. The test results showed that the resistance of stitched fibres against the crack propagation in stitched hybrid composites can significantly improve the mixed-mode interlaminar fracture toughness.
Cite this paper: H. Ghasemnejad and H. Mirzaii, "To Improve Mixed-Mode Interlaminar Fracture Toughness of Composite Sub-Structures," Open Journal of Composite Materials, Vol. 4 No. 1, 2014, pp. 32-39. doi: 10.4236/ojcm.2014.41004.
References

[1]   BS EN ISO 15024:2001, “Fibre-Reinforced Plastic Composites. Determination of Mode I Interlaminar Fracture Toughness, GIC, for Unidirectional Reinforced Materials,” BSI, 2002.

[2]   T. E. Tay, “Characterization and Analysis of Delamination Fracture in Composites: An Overview of Developments from 1990 to 2001,” Applied Mechanics Reviews, Vol. 56, No. 1, 2003, pp. 1-31.
http://dx.doi.org/10.1115/1.1504848

[3]   P. Davies, B. R. K. Blackman and A. J. Brunner, “Standard Test Methods for Delamination Resistance of Composite Materials: Current Status,” Applied Composite Materials, Vol. 5, No. 6, 1998, pp. 345-364.
http://dx.doi.org/10.1023/A:1008869811626

[4]   D. R. Moore, A. Pavan and J. G. Williams, “Fracture Mechanics Testing Methods for Polymers, Adhesives and Composites,” Elsevier Science Ltd., Amsterdam, 2001.

[5]   B. R. K. Blackman, A. J. Kinloch and M. Paraschi. “The Determination of the Mode II Adhesive Fracture Resistance, GIIc, of Structural Adhesive Joints: An Effective Crack Length Approach,” Engineering Fracture Mechanics, Vol. 72, No. 6, 2005, pp. 877-897.
http://dx.doi.org/10.1016/j.engfracmech.2004.08.007

[6]   B. R. K. Blackman, A. J. Kinloch and J. G. Williams, “Mode-II Fracture Testing of Composites: A New Look at an Old Problem,” Engineering Fracture Mechanics, Vol. 73, No. 16, 2006, pp. 2443-2455.
http://dx.doi.org/10.1016/j.engfracmech.2006.05.022

[7]   ASTM D 6671-01, “Standard Test Method for Mixed Mode I/II Interlaminar Fracture Toughness of Unidirectional Fibre Reinforced Polymer Matrix Composites.”

[8]   A. J. Kinloch, Y. Wang, J. G. Williams and P. Yayla, “The Mixed-Mode Delamination of Fibre Composite Materials,” Composites Science and Technology, Vol. 47, No. 3, 1993, pp. 225-237.
http://dx.doi.org/10.1016/0266-3538(93)90031-B

[9]   N. S. Choi, A. J. Kinloch and J. G. Williams, “Delamination Fracture of Multidirectional Carbon-Fibre/Epoxy Composites Under Mode I, Mode II and Mixed-Mode I/II Loading,” Journal of Composite Materials, Vol. 33, No. 1, 1999, pp. 73-100.
http://dx.doi.org/10.1016/0266-3538(93)90031-B

[10]   F. Ozdil and L. A. Carlsson, “Beam Analysis of AnglePly Laminate Mixedmode Bending Specimens,” Composites Science and Technology, Vol. 59, No. 6, 1999, pp. 937-945.
http://dx.doi.org/10.1016/S0266-3538(98)00128-6

[11]   F. Ozdil and L. A. Carlsson, “Characterization of Mixed Mode Delamination Growth in Glass/Epoxy Composite Cylinders,” Journal of Composite Materials, Vol. 34, No. 5, 2000, pp. 420-441.

[12]   B. W. Kim and A. H. Mayer, “Influence of Fiber Direction and Mixed-Mode Ratio on Delamination Fracture Toughness of Carbon/Epoxy Laminates,” Composites Science and Technology, Vol. 63, No. 5, 2003, pp. 695713.

[13]   A. B. de Morais and A. B. Pereira, “Mixed Mode I + II Interlaminar Fracture of Glass/Epoxy Multidirectional Laminates—Part 2: Experiments,” Composites Science and Technology, Vol. 66, No. 13, 2006, pp. 1896-1902.
http://dx.doi.org/10.1016/j.compscitech.2006.04.006

[14]   J. M. Q. Oliveira, M. F. S. F de Moura, M. A. L. Silva and J. J. L. Morais, “Numerical Analysis of the MMB Test for Mixed-Mode I/II Wood Fracture 2,” Composites Science and Technology, Vol. 67, No. 9, 2007, pp. 1764-1771. http://dx.doi.org/10.1016/j.compscitech.2006.11.007

[15]   S. N. Wosu, D. Hui and P. K. Dutta, “Dynamic MixedMode I/II Delamination Fracture and Energy Release Rate of Unidirectional Graphite/Epoxy Composites,” Engineering Fracture Mechanics, Vol. 72, No. 10, 2005, pp. 1531-1558. http://dx.doi.org/10.1016/j.engfracmech.2004.08.008

[16]   F. Dharmawan, G. Simpson, I. Herszberg and S. John, “Mixed Mode Fracture Toughness of GFRP Composites,” Composite Structures, Vol. 75, No. 1-4, 2006, pp. 328-338.
http://dx.doi.org/10.1016/j.compstruct.2006.04.020

[17]   K. L. Rugg, B. N. Cox and R. Massabo, “Mixed-Mode Delamination of Polymer Composite Laminates Reinforced through the Thickness by z-Fibres,” Composites Part A: Applied Science and Manufacturing, Vol. 33, No. 2, 2002, pp. 177-190.
http://dx.doi.org/10.1016/S1359-835X(01)00109-9

[18]   P. Davies (Editor), “Protocols for Interlaminar Fracture Testing of Composites,” ESIS-Polymers and Composites Task Group, 1993.

[19]   BS EN ISO 2747, “Glass Fibre Reinforced Plastics-Tensile Test,” British Standard Institute, London, 1998.

[20]   BS EN ISO 14129, “Fibre Reinforced Plastics Composite-Determination of the In-plane Shear Stress/Shear Strain Response, Including the In-plane Shear Modulus and Strength by the ±45 Tension Test Method,” British Standard Institute, London, 1998.

[21]   ASTM D 3171-99, “Standard Test Method for Constituent Content of Composite Materials,” Annual book of ASTM Standards, West Conshohocken, 2002.

[22]   L. Tong, A. P. Mouritz and M. Bannister, “3D Fibre Reinforced Polymer Composites,” Elsevier, Amsterdam, 2002.

 
 
Top